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ABSTRACT 

We develop a method to approximately solve a large staircase linear program that 

optimizes decisions over time. Also developed is a method to bound that approximation's 

error. A feasible solution is derived by a proximal cascade, which sequentially considers 

overlapping subsets of the model's time periods, or other ordinally defined set. In turn, we 

bound the cascade's deviation from the optimal objective value by a Lagrangian cascade, 

which penalizes infeasibility by incorporating dual information provided by the proximal 

cascade solution. When tested on a large temporal LP developed for US Air Force mobility 

planners, we often observe gaps between the approximation and bound of less than 10 per- 

cent, and save as much as 80 percent of the time required to solve the original problem. We 

also address methods to reduce the gap, including constraint extension of the Lagrangian 

cascade, as well as exploitation of dual multipliers within the proximal cascade. 
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EXECUTIVE SUMMARY 

This dissertation develops techniques to solve very large instances of a linear pro- 

gram that optimizes US Air Force (USAF) strategic and tactical airlift for regional con- 

tingencies. Until recently, simulation and spreadsheet models were used for airlift analysis 

because sufficiently detailed optimization models were intractable due to their size. In order 

to facilitate the use of highly detailed mobility optimizations, we develop Übe proximal cas- 

cade, which approximates the solution of large linear programs that involve decisions over 

time, location, or priority. We also develop the Lagrangian cascade, which quantitatively 

assesses the approximation's accuracy. 

A linear program may be approximated by the proximal cascade when a model's 

decisions directly affect only proximal decisions, i.e., those that are closely related by some 

attribute such as time. A proximal cascade first considers only the earliest decision periods 

of a model, and then cascades forward in time to consider the decisions of later periods. 

The number of periods considered by each stage, or cascade subproblem, is often limited 

by the computational power available. Alternatively, subproblem size can be determined 

by the level of future uncertainty encountered in the system being modelled. 

We assess the accuracy of the proximal cascade by the Lagrangian cascade. La- 

grangian cascades also consist of proximally related subproblems, made separable by not 

enforcing resource limitations that involve the time periods of multiple subproblems. In- 

stead of explicit enforcement, these resources express their scarcity by charging a consump- 

tion penalty, similar to the ones used in the proximal cascade. 

A proximal cascade solution enforces all resource limitations in one or more sub- 

problems. Therefore, its solution does not violate any of the assumptions made by the model 

formulation. However, its solution may not be the best possible, because it is encumbered 

by not being able to consider all periods at once. Conversely, a Lagrangian cascade may 

provide a solution that violates resource limitations, but is more economical by some ob- 

jective cost measure than a fully constrained solution. Therefore, the two cascade objective 

costs bound the optimal objective cost, which is the cost when all periods are solved at once. 

xvn 



The two cascades are also related by consumption penalties. All linear programs 

yield as part of their solution, marginal values for all of the constraining resources. Marginal 

values from the proximal cascade are used in the Lagrangian cascade as appropriate penalty 

levels for consumption of the resources whose limits are not enforced. This circumvents a 

long search for the appropriate penalties that frequently hamper similar relaxation-penalty 

methods. 
The Naval Postgraduate School/RAND Mobility Optimizer (NRMO) provides an 

excellent opportunity to test proximal and Lagrangian cascades. This model is the latest in 

an evolution of linear programing optimization models that address the increased interest in 

airlift mobility as a result of the Gulf War. NRMO optimizes decisions involving numerous 

aspects of a deployment, including strategic airlift mission and crew assignments, aerial 

refueling missions, intra-theater deliveries, and recovery options. Consequently, the size of 

this model can be huge. 

When tested on several NRMO scenarios, the percentage gap between the proximal 

and Lagrangian cascade objective costs is often within 10%. In other words, the cost of the 

proximal cascade solution is within 10% of the optimal solution cost. Computation times 

vary, but can take as little as 20% of the time required to solve all periods at once 

Cascades provide a useful approximation and bounding strategy for linear programs 

that exhibit a proximal decision structure. The method permits solution of model scenarios 

that are much larger than are otherwise possible, and has applicability to a linear program 

currently in use by the US AF. 
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I.       INTRODUCTION 

Large mathematical programs often require indirect solution methods that exploit 

the problem's structure. When the variables and constraints of a mathematical program 

can be ordered by some attribute such that all variables within any constraint are ordinally 

proximate, that mathematical program can be characterized as a "staircase model.'' The 

purpose of this research is to formalize a heuristic that exploits the structure of staircase 

linear programs, and provide a bound for that heuristic's accuracy. Once developed, we test 

the heuristic and bound on a large linear program used by the US Air Force (USAF) for air 

mobility analyses. 

Staircase linear optimization models are widely used in many areas such as schedul- 

ing, where decisions of a given time period directly affect only the decisions of proximal 

time periods. The success of linear and integer programming (LP and IP, respectively) in 

aiding schedulers is well known. These models frequently consider a large but finite solu- 

tion horizon [Walker and Dell, 1995], which is the number of time periods included in a 

scheduling model. Unfortunately, these models are limited by temporal considerations in at 

least two ways: 1) a distant solution horizon may make gathering accurate data for the latter 

periods problematic, and 2) a sufficiently large solution horizon may produce a model that 

is too large to solve. Not surprisingly, a human scheduler faces the same difficulties, namely 

reconciling the increasing number of options with decreasing certainty as the solution hori- 

zon grows. For either the human scheduler or the optimization model, perhaps the most 

straightforward way of dealing with the difficulties presented by a large problem is to fo- 

cus on a subset of the problem's time periods, and then move forward to a new subset. This 

temporal myopia, or inability to see the full problem at any one point, may result in a subop- 

timal solution, but can make the problem simple enough to solve. Moreover, a model that is 

used to mimic scheduling, but not produce schedules, may be best if it can incorporate the 

realism of myopic scheduling. For example, when selecting fleet size or infrastructure in 

order to maximize a delivery system's effectiveness, a model should not unduly anticipate 



delivery requirements far into the future. Thus, myopia is a desirable model characteristic 

whenever perfect foresight is unwarranted. 

Modeling myopia is acceptable and realistic provided the resource commitments 

(constraints) initiated by decisions are short relative to the solution horizon. In an LP, this 

constraint-enforced linkage of a time period's variables only to nearby periods resembles a 

staircase along the main diagonal of the constraint coefficient matrix. The rest of the co- 

efficient matrix is relatively sparse, since variables associated with the early time periods 

rarely appear in constraints corresponding to the later time periods. Thus, temporarily ig- 

noring the variables and constraints associated with later periods may have only a small 

effect on the "early" portion of the solution, since most of the constraints for those periods 

are left intact. 
Once a schedule is produced for a limited number of early periods, the earliest deci- 

sions are fixed, and the model "cascades" forward in order to solve for a later set of periods. 

Webster's [1993, p. 345] defines a cascade as: 

"A succession of stages (as in a process or in the arrangement of the parts 
of an apparatus) in which each stage derives from or acts, sometimes cumu- 
latively, upon the product or output of the preceding." 

In a mathematical program, a cascade implies generating a feasible solution by solving 

only a subset of a problem's constraints and variables, and then moving to a new subset 

corresponding to later time periods. Each of these cascade subproblems should re-solve 

a portion of the previous subproblem in order to minimize the end effects caused by the 

temporal limitation. This method of approximating an LP solution was first suggested by 

Charnes and Cooper [1961, pp. 370-388], and is often used to truncate problems with 

a theoretically infinite number of time periods. In contrast, a goal of this research is to 

implement a proximal cascade heuristic; a heuristic that sequentially selects and solves 

portions of a model whose variables and constraints are finitely indexed by an ordinally 

defined set such as time periods. 
The closeness of a proximal cascade approximation to the overall LP solution is 

dependent on many scenario-specific factors. In order to supplement the proximal cascade 

approximation, this research also develops an optimistic bound on the LPs solution value 



by exploiting information derived from the proximal cascade. When ordered by a time 

index, staircase LPs may have constraints that link only proximal time periods; relaxing the 

constraints associated with certain time periods can decouple a large problem into several 

subproblems. Lagrangian relaxation has long been used for this; it discourages violation 

of relaxed constraints through penalties. The Lagrangian penalty is applied to a series of 

separable problems, and an optimistic bound for the solution's objective value is derived. 

Unfortunately, finding the correct penalty values for relaxed constraints is often as difficult 

as solving the problem without the relaxation. However, this research shows that reasonable 

penalties for the relaxed constraints are readily available from the "shadow prices" of a 

proximal cascade solution. A Lagrangian cascade produces a bound on the LP solution 

by incorporating the proximal cascade penalties into a series of decoupled subproblems. 

When combined with the proximal cascade approximation, the size of the gap between the 

two values gives a quantitative assessment of proximal cascade accuracy. 

Once developed, we demonstrate proximal and Lagrangian cascades on a large LP 

currently in use by USAF analysts for mobility planning. This model, under development 

concurrent with the cascade research, defies the long held opinion among many Air Force 

planners that LPs with sufficient detail to model the underlying mobility system are cur- 

rently intractable due to their size. Proximal and Lagrangian cascades provide a methodol- 

ogy by which to allay that criticism, and are examined in this research using instances of 

the mobility LR 

A cascade can be used on a wide variety of problems for several different reasons, 

and may often be improved by altering problem structure or further exploiting dual infor- 

mation. We complete this research by examining how cascade performance on general LPs 

can be predicted and enhanced. 

A.        LITERATURE REVIEW 

The topics germane to the research include decomposition of large LPs, Lagrangian 

relaxation, time-based or proximal methods, and military mobility optimization. While 

there is a wealth of literature on decomposition and Lagrangian relaxation, proximal meth- 



ods and military mobility optimization are sparsely documented. Below is a summary of 

the literature. 

1.        Decomposition 

The notion of incorporating dual information to decompose large linear programs 

into smaller, structured LPs originated with Dantzig and Wolfe [1960], and Benders [1962]. 

Both methods rely on passing primal and dual information between a master problem, 

which addresses the original problem in a simplified form, and one or more subproblems, 

which address portions of the problem in detail. These subproblems often exhibit a compu- 

tationally exploitable structure. 

In Dantzig-Wolfe decomposition, the subproblems use dual prices from the master 

problem in order to derive new variables for the master problem that will price favorably 

in subsequent iterations. In turn, the master problem takes a convex combination of these 

new variables to produce a feasible solution to the overall problem, as well as new resource 

prices for the subproblems. The method converges when the subproblems cannot find a 

variable to price favorably in the master problem. 

Benders' decomposition of an LP is similar in many respects to Dantzig-Wolfe de- 

composition since the Benders' master problem is the dual of the Dantzig-Wolfe master 

problem. Consequently, instead of solving the master problem with a subset of variables 

(as in Dantzig-Wolfe), the Benders' master problem solves a subset of cuts derived from 

a reformulation of original constraints, but in the dual. In turn, the Benders' decomposi- 

tion subproblems use the current master problem solution to produce a violated constraint 

to be appended to the next master problem iteration. The method has converged when the 

subproblem solution can no longer find a violated constraint. 

Geoffrion and Graves [1974] use Benders' decomposition to reduce a mixed integer, 

multi-commodity transportation problem into separable single commodity problems. In this 

formulation, the master problem dictates the configuration of the integer variables based on 

cost information from the subproblems, while the subproblems determine the flows based 

on the network provided by the master problem. Brown, Graves, and Honczarenko [1987] 



extend this technique using elastic constraints to insure feasibility as well as improve con- 

vergence. 

Decomposition has also been applied to staircase linear programs by Glassey [1973] 

as well as Ho and Manne [1974]. Their method repeatedly applies the Dantzig-Wolfe tech- 

nique to succeeding (or preceding) levels of a staircase LP, forming a "nested" decompo- 

sition. Each new staircase level acts as the next subproblem, which feeds back pricing in- 

formation to its master (the previous staircase level), while sending variable levels forward 

to the next staircase level. A staircase LP can also be decomposed by Benders' method, as 

shown by Van Slyke and Wets [1969] for two-stage stochastic programming, and later by 

Birge [1985] for multi-stage stochastic programming. 

Although not a decomposition technique, the solution of large-scale LPs can also be 

approximated by aggregation of time periods until a problem of workable size is derived. 

Zipkin [1980] describes a methodology for bounding the error incurred by such aggregation 

in some problems. Although the idea has merit for large models, and has been used to 

solve problems similar to the one described in this research, it has no direct applicability to 

proximal and Lagrangian cascades. 

2.        Lagrangian Relaxation 

Lagrangian relaxation is used in many optimization applications, including vehicle 

routing, scheduling, and network design problems [e.g., Ahuja, Magnanti, and Orlin, 1993, 

pp. 620-635]. Common to these methods is a search for accurate Lagrangian penalties of 

the relaxed constraints, which has proved the most difficult aspect of the overall method. 

Parker and Rardin [1988, pp. 205-237], as well as Bazaraa, Sherali, and Shetty [1993, pp. 

199-231] give a summary of the search techniques. A Lagrangian cascade requires none of 

these techniques, since the Lagrangian penalties are a by-product of the proximal cascade. 

However, further tightening of the Lagrangian cascade bound could benefit from multiplier 

search techniques. This remains a subject for further research. 



3.        Time-Based, or Proximal Methods 

The use of temporally progressing solution strategies in optimization is of two va- 

rieties; solution cascading and forward optimization. Brown, Graves, and Ronen [1987] 

implement solution cascading by solving successive portions of a model's time periods in 

order to produce an advanced basis. For example, a problem with 15 time periods is split 

into three smaller problems, each considering only rows and columns indexed with peri- 

ods 1-5,6-10, and 11-15, respectively. The optimal solutions of these subproblems are then 

used to suggest columns that price favorably, as well as produce an advanced, or "crash" 

basis for the original problem. With this "head start," optimality may ensue in fewer itera- 

tions. Jayakumar and Ramasesh [1994] demonstrate the computational savings of solution 

cascading on a number of test problems. 

Forward optimization as outlined by Morton [1981] involves solving successively 

longer (more time periods) problems until a decision horizon is reached. A decision horizon 

is a point beyond which solving larger problems will not alter the decisions of the first time 

period. This method shows that (for some problems) an optimal solution can be reached by 

solving a succession of small LPs, and recording the values within each as optimal. Aron- 

son et al. [1985] develop and test this idea for certain classes of problems, notably from 

the area of manufacturing. Production scheduling problems where time periods are linked 

only by inventory level exhibit natural decision horizons just after periods of maximum 

demand. At these points in time, inventories are exhausted, effectively restarting the pro- 

duction schedule. Thus, forward optimization is appealing when solving certain classes of 

problems, but does not offer general applicability. 

Manne [1970] offers related work on limiting the temporal horizon of an LR His 

research provides sufficient conditions for optimality when truncating infinite horizon LPs 

whose coefficients do not change in the latter periods. Walker [1995] extends this idea 

to bound the error produced by truncating infinite horizon LPs prior to the point where 

Manne showed equivalency between finite and infinite horizon problems. Unfortunately, 

the infinite horizon method requires an invariant constraint structure beyond a specified 

time period, which does not occur in all staircase problems. There is no body of literature 



on the solution and bounding of large, but still finite, LPs by a proximal cascade, which 

successively solves portions of a non-homogeneous staircase LP in order to approximate 

an otherwise intractable problem. 

4.        Military Mobility Optimization 

Dantzig and Fulkerson [1954] offered the first application of mathematical program- 

ming to time-dynamic military transportation problems. Their work scheduling US Navy 

tankers was seminal for military logistics optimization as well as time-dynamic network 

transportation problems. 

Until recently, the computational demands of LP in modeling large-scale Air Force 

contingency deployments allowed an insufficient level of detail for many analyses. Con- 

sequently, simulation was the method of choice for analyzing fleet mix and infrastructure 

requirements of such a deployment. Wing et al. [1991] developed a time-dynamic LP as a 

response to the Mobility Requirements Study mandated by the National Defense Authoriza- 

tion Act of 1991. Yost [1994] continued the integration of LP into the mobility modeling 

arena with the development of THRUPUT in 1994, which offered a detailed routing struc- 

ture, but was temporally static. Concurrent with Yost's work, the RAND Corporation devel- 

oped CONOP [Killingsworth and Melody, 1994], which also focused on airlift, but initially 

examined the efficacy of aerial refueling of airlifters in a contingency. Lim [1994], Morton, 

Rosenthal, and Lim [1995], and Rosenthal et al. [1996] extended THRUPUT with the de- 

velopment of THRUPUT II, which incorporated the multiple time periods into Yost's work. 

Subsequently, RAND's CONOP model and THRUPUT II were merged into the Naval Post- 

graduate School/RAND (NPS/RAND) Mobility Optimizer [Rosenthal et al, 1997], which 

is the case study considered in this dissertation. 

B.        EXPLANATION OF TERMS 

Several key terms have a specific meaning in this research. A comprehensive list 

follows: 



Monolith: A formulation a linear program. Many definitions that follow consider portions, 
or subsets of the monolith. 

Row: A constraint of the monolith, defined by its indices, technological coefficients, sense 
(<, =, or >), and right hand side. 
Column: A variable of the monolith, defined by its indices, coefficients, and bounds. 

Association: If a row and column intersect with a nonzero technological coefficient, then 
they are said to be associated. 

Cascade index set: A scalar attribute assigned to each row and column. The scalar may 
be an index, or a distinguished null index (conventionally zero) when the assignment of a 
specific scalar is inappropriate (this occurs if a row or column has no corresponding cascade 
index). The idea is to assign non-null scalars that express a relation or proximity among 
rows and columns with identical or nearly identical non-null indices. 

Active Index Set: A distinguished subset of contiguous cascade indices and the null index. 

Linkage: A row associated with columns endowed with distinct cascade indices creates a 
linkage between the indices. 

Active Row: Row endowed with an active cascade index. 

Lagrange Row: Row other than an active row represented only by its Lagrangian relaxation 
(referred to as "Lagrange-relaxed"). 

Relaxed Row: Row that is neither active nor Lagrange-relaxed. 

Active Column: Column endowed with an active cascade index. 

Fixed Column: Not an active column, but endowed with some value which may influence 
its associated rows. A fixed column's value equals its level when made inactive, or zero if 
the column has never been active. 

Subproblem: Active rows and columns, where the objective may include terms contributed 
by Lagrange-relaxed rows and fixed columns, and the right hand sides may be influenced 

by fixed columns. 
Cascade: A sequence of subproblems. The motive for using a cascade is to indirectly as- 
semble an acceptable answer to the monolith with less effort than an outright direct attempt 
at solution. A cascade may, or may not, culminate in a strictly feasible, optimal solution to 
the monolith. However, prescribing a useful solution for the problem from which the model 
monolith derives is the goal and guide. 

Width: The range of non-null cascade indices active in, say, a subproblem or a row. 

Overlap: The range of the subset of non-null cascade indices in common between, say, two 
subproblems or two rows. 

Proximal Cascade: A non-separating sequence of subproblems, each of which has width 
intentionally constrained to represent some limited effective planning horizon less that the 
total number of cascade indices. A proximal cascade may be used to enhance computa- 
tional tractability, or to temper unrealistic omniscience in a model monolith that represents 
a problem that would in reality be dealt with myopically. 
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Lagrangian Cascade: A separating sequence of subproblems defined by exhaustive par- 
tition of the cascade index set and rendered disjoint by Lagrangian relaxation of any row 
associated with two or more subproblems. 

Gap (absolute): The absolute value of the difference between the proximal and Lagrangian 
cascade objective function values. 

Solution quality: The inverse of the absolute gap between the monolith objective function 
value and the (proximal or Lagrangian) cascade objective function value. Solution quality 
equals infinity when this absolute gap is zero; solution quality equals zero when the cascade 
is infeasible or unbounded. 

Gap (relative): The absolute gap divided by the absolute value of its more favorable con- 
stituent value (the lower value for a minimization problem). Relative gaps are assumed 
herein. 

C.        OVERVIEW 

Chapter II develops proximal and Lagrangian cascade theory. The context used is a 

production setting, with the time index serving as the cascade index set. Rather than use the 

simplest staircase model, this chapter incorporates formulation complexities that ease the 

transition into the case study. Foremost among these characteristics is "elastic demand," 

which serves the dual purpose of supporting the case study, as well as demonstrating the 

flexibility of a cascade beyond simple staircase models. 

Chapter III outlines the implementation of proximal and Lagrangian cascades by 

presenting a discussion and pseudocode of each. The remainder of the chapter considers 

the ramifications of heuristic parameter selection on problem feasibility and solution quality. 

Chapter IV describes the USAF mobility model under development at NPS, and 

gives specific formulations for the proximal and Lagrangian cascades. Much of this chapter 

reconciles the theoretical development with the inevitable complexity of a "real world" 

model. The rest of the chapter describes cascade performance on a number of problem 

instances. 

Chapter V generalizes a cascade to an arbitrary model, and offers a method to assess 

whether a model cascade might produce a feasible result of good quality. The chapter also 

discusses what conditions suggest whether or not a model cascade is warranted. Finally, 

the chapter considers how additional dual and primal information may be incorporated to 



improve cascade solution quality. The most interesting of these methods uses an approach, 

similar to Benders' decomposition, to iteratively reduce the cascade gap. 

The research is concluded in Chapter VI, which summarizes the theoretical and 

computational results. Chapter VI also suggests future opportunities for cascade research. 
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II.       CASCADE THEORETICAL DEVELOPMENT 

This chapter introduces and develops proximal and Lagrangian cascades. Although 

there are many variations of staircase problems, this research principally considers a schedul- 

ing problem that is formulated as an elastic-demand staircase model. To that end, this 

chapter first derives the single-commodity, elastic-demand staircase model from a familiar 

production-scheduling LE Subsequently, we use that model to introduce the proximal cas- 

cade by segmenting it into smaller pieces. This segmentation produces a series of smaller 

problems that jointly approximate the monolith. Next, we develop proximal cascade theory 

for a multi-commodity elastic-demand staircase model, as well as for a generalized stair- 

case model without elastic demands. Finally, the chapter introduces Lagrangian cascade 

theory, which provides a bound on the monolith's optimal objective value. 

A.        SINGLE-COMMODITY ELASTIC-DEMAND STAIRCASE LP 

Preliminary use of a simple model is warranted. Although the case study for this 

research focuses on a military mobility scenario, the most familiar model setting involves 

scheduling of manufacturing resources. Consider the following single-commodity 

production-scheduling LP with elastic demands, multiple period lead times, and no inven- 

tory costs. In this case, assume the lead time is two periods, so production started in period 

t consumes resources in periods t and t + 1, and can meet demand as early as period t +1 : 

INDICES 
t Time periods (t = 1,2...T) 

DATA 
dt Demand in period t (di = 0) 
st Production resource available in period t (st > 0) 
au> Production resource consumption in period t per unit of 

production started in period t'. (In general, att> is not 
restricted to be positive unless specified.) 
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mRIABLES mRIABLES 
Xt production started in period t (XT — 0, due to lead time) 
It inventory at the end of period t (h = 0, IT = 0) 
pt elastic variable for unsatisfied demand in period t 

FORMULATION 

T 

min ^Pt 
t=i 

s.t.       Xt-X -It + It-1 + Pt = dt        Kt<T 

aii-Xi < si 

at,t-iXt-i + attXt<st       Kt<T 

0'T,T—\X.rr—l ^ Sy 

Xt,It,Pt>0      vt 

Assuming that all the demand is in the last period, i.e., dt = 0 \ft < T, the inventory 

variables may be eliminated by noting that I2 = Xlt and It = Xt-i - h-\ (see Johnson 

and Montgomery [1974, pp. 197-199] for a detailed discussion). Rewriting Pt as P, the 

problem may be reformulated as 

(A)               ZA = min P 

T-l 

s.t.        Y,x*+P==d (4.1) 
t=l 

a>nXx < si (A.2) 

Ott-iXt-i + auXt^St        Kt<T (A.3) 

Q>TT—IXT—\ 'S: $T (A4) 

P > o,    Xt > 0  V t. (A.5) 

The remainder of this section assumes A has a finite optimal solution Xf, 1 < t < T 

(throughout this document, a superscript on a variable denotes the variable's optimal value 

in the superscripted problem). 
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This simple problem offers a notationally straightforward way to demonstrate a cas- 

cade on a staircase problem, and it incorporates the additional richness of a complication 

such as elastic demand. 

1. Segmented Approximation 

A segmented approximation is a restricted version of a proximal cascade and it pro- 

vides a good introduction. Problem A is made separable and approximated by removing, 

or setting equal to zero, column, XT+i for some value of r between 1 and T - 1. The fol- 

lowing two maximization problems serve this purpose by separating a restricted version of 

A into two subproblems, one optimizing periods 1 to r, and the other optimizing periods 

r +1 to T. The objective of each is to maximize production, rather than minimize penalties 

(We address the objective function sense in greater detail shortly). 

Define the subproblem SA1 (with the solution Xf, 1 < t < r, and the solution 

value Zsal) by 

T 

(SA1) Zsal =maxJ]Xt 
t=i 

s.t.      anXi < sx {SA1.1) 

at,t-iXt-i + attXt <st       Kt<T (SA1.2) 

aT+i,rXT < sT+1 (SAL3) 

Xt>0     l<t<r. (SA1.4) 

Similarly, define the subproblem SA2 (with the solution X\a2, r + 1 < t < T, and 

the solution value Zsa2) by 

T-l 

(SA2) Z"* = max J^ Xt 

s.t. 

t=T+2 

OT+2,T+2^T+2 5; S
T+2 (SA2.1) 

Gt.t-l-Xt-l + attXt < st 
r+2<t<T (SA2.2) 

&TT—IXT—1 ^ Sx (SA2.3) 

Xt>0    T + l<t<T. (SA2.4) 
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Given these two subproblem values, a bound on the solution to A is readily avail- 

able. Using the notation [x]+ = max[0,x], the following proposition demonstrates this 

relationship. 

Proposition 2.1 IfSAl andSA2 have finite solutions, ZA<[d- Zsal - Zsa2}+ . 

Proof:    Removing the column XT+l (fixing at 0) from A produces a restriction, but also 

hints at separability: 

< min    P 

T-l 

s.t. j2Xt+ Yl xt+p = d 

4=1 t=r+2 

{SAU),...,{SAU) 

{SA2.1),...,{SA2.4). 

Solving for P, and noting that P > 0, the above is restated as 

■vT-l 

zA< min     d - J2t=i xt ~ Et=r+2 xt 
s.t. {SAU ),..., {SAU), {SAU ),...,{SA2.4) 

+ 

The non-negative stipulation is an important aspect of the problem, since SA1 and SA2 do 

not restrict the variable sums to be less than d. Because the constraint structure is separable, 

the right side of this inequality may be rewritten as 

d- 
max YZ=ixt 

s.t. {SA.1.1),...,{SAU) 
max  Y*J+2Xt 

s.t. {SA2.1),..., {SA2.4) 

+ 

or: 

Thus we have 

[d-ZsaI -Zsa2] + 

ZA< [d-Zsa> -Zsa2] + 

Observe that the combined solutions to A41 and SA2 are feasible to A in the absence 

of over-production, since restricting XT+\ to zero makes A equivalent to SA1 and SA2 , 

which are feasible by assumption.  Thus, a feasible approximation to A is produced by 
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solving small subproblems. Unfortunately, the bound may be weak when XT+i is positive 

in the optimal solution to the monolith. Moreover, the method does not work for more 

complex problems. These shortcomings can be fixed by a proximal cascade, shown below. 

2. Proximal Cascade Approximation 

The segmented approximation removes columns to produce separable subproblems, 

foregoing any potential objective function improvement from those columns. The proxi- 

mal cascade partially redresses this disadvantage, and we will show that its objective value 

is bounded from above by the segmented approximation just presented. This approach 

also solves the problem in piece-wise fashion, but uses a sequential method that fixes col- 

umn levels from the latter periods of preceding subproblems. In turn, those fixed levels 

are incorporated into successor subproblems, allowing an approximation by a cascade of 

subproblems. To demonstrate, assume that subproblem SA1 has been solved, and that the 

column levels of periods t < r are fixed. Since XT-X is the only column to directly in- 

fluence periods r and greater, the second subproblem may be rewritten to incorporate SA1 

using just the level of XT-\. Towards that end, define problem CA2 (with the solution 

X?2, T < t < T - 1) by 

r-l T-l T—L J. — X 

Zca2 = Y^ x?al + max J2 xt 
t=l t=T 

rsal S.t. aTTXT <ST- Or.r-iX^! (CA2.1) 

at,t-iXt-1 + auXt<st   r<t<T (CA2.2) 

CLTT—IXT—I ^ $T (LsAJ.J) 

Xt>0   r<t<T. (CA2.4) 

Additionally, let 

Zcas = [d-Zca2]+. 

This value is the proximal cascade approximation of problem A. The following proposition 

relates the solution value of A to its proximal and segmented approximations: 
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Proposition 2.2    If SA 1,SA2 and CA2 have finite solutions, 

ZA < z<*> < [d- zsal - zsa2]+. 

Proof:     To show the right-hand inequality, first note that removing column XT+1 restricts 

CA2, and thus 

T-l T-l 

Zoa2 >    j2 Xf + max XT        +  X)  Xt 
t=l t=r+2 

S.t. aTTXr <       ST- Or.T-iX^.! 

QT+\,TXT <     ST+1 

ar+2,r+2^T+2 ^     ST+2 

Ot.t-iXt-i +a«Xt   <     st    r + 2<t<T 
&TT—IXT—I   —    &T 

Xt   >     0    r + Kt<T 

=   £ Xf + max XT 
t=i 

s.t. aTTXT    <    ST — aTiT_iXj.11 

QT+I.T-X'T     < S
T+1 

XT   > 0 

T-l 

+ max X  -^t 
t=T+2 

S.t.        aT+2,T+2Xr+2 ^     ST+2 

Ot,t_iXt_i +o«Xt   <    st      r + 2<t<T 
(ITT—\XT-1     5:      ST 

Xt   >     0      r+l<i<T 
^jroy     i    i7sa2 

Rearranging terms yields the desired result: 

 yca2   <--   ysal     ysa2 

Zcas = [d- Zca2] + <[d- ZsaI - Zsa2}+ . 

This is the right-hand inequality. Note also that X?', 1 < t < r, and Xf, Xf, r + 1 < 

t < T is feasible to A, since SA1 and CA2 jointly enforce the constraints of A. 

16 



To show the left-hand inequality, note that setting XT_i = X%LX restricts problem 

A. Stated in the form derived at the beginning of the chapter: 

ZA   < 

T-l 
d — max E Xt 

s.t.   (A.2),..., (A.4), (SA1.T), (CA2.4), Xr = X? 

d - Xs
T
al - max E Xt + E Xt 

s.t. (SAU), (SAU), 
Otit-iXt-i + OttXt <st    Kt<T-l 

oT_i|T_2XT_2 < sT_i — aT_iiT_iJsQ.11 

T + 

(G42.i ),..., (CA2.4) 

r-l 
.va7 
t 

T-l 
ca2 

+ 

[d-z^Y =Z' 

D 

This result shows that a feasible approximation to problem A is obtained by proximal 

cascade. This approximation is no further from the optimal solution value than a segmented 

approximation of A, and it is better than the segmented approximation when production in 

period r + 1 is beneficial. The next section shows that the proximal cascade also provides 

a lower bound on the optimal objective value of A. 

3.        Lower Bound by Proximal Cascade 

If the assumptions given to this point are supplemented with the non-negativity of 

an', a lower bound on the solution to A is available from the proximal cascade subproblems. 

Thus, for the cost of solving SA1 and CA2, one obtains a feasible approximation of the 

solution to A, as well as an assessment of its quality. 

To show this result, a preliminary lemma is required: 

Lemma 2.3        Ifatt, > 0 Vt,f,   Z"1 > J2xf- 
4=1 
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Proof: 
Zsal   =   max       J2xt 

s.t. \SA1.1),...,(SA1.4) 

T 

>   max        Y^ xt 

s.t. }SAU),(SA1.2),(SA1.4) 
aT+iiTXT < sT+i — aT+\^+iXT+l 

= ixt 
t=i □ 

The equality holds because fixing XT+1 to Xf+1 allows the remaining columns to 

take their optimal values from problem A. With this lemma (and the non-negativity assump- 

tion of att>), the following proposition establishes that a lower bound derives from "double 

counting" the levels of columns that are active in both subproblems. In this case, XT is the 

"double counted" column, since it is active in both subproblems: 

Proposition 2.4        Ifatt, > 0 Vt, t,   [d- Z°°2 - Xf}+ < ZA 

Proof: Reducing  the  right-hand  side  of the  period  T  +  1   inequality  from 

sT+i to sT+i - ar+ltTXf is a restriction of subproblem CA2. Stipulating XT = 0 further 

restricts CA2: 
T-i r-i 

Zca2 >    j2 Xf +   max     J2 xt 
t=l t=r 

s.t.     (CA2.1) 
aT+i TXT + aT+i,T+i^T+i < S

T+I — aT+i,rXT 

' atjt-iXt-x + at,tXt <st r + 2<t<T 
XT = 0 

(CA2.3),{CA2.4) 

=   J2X?'+   max     £  Xt 
t=1 t=T+1 VA 

s.t.     aT+ijT+iXT+i <   ST+I - O>T+I,TXT 

att-iXt-i + at,tXt   <   st   r + 2<t<T 
(CA2.3),(CA2A) 

r-1 T-l 

=  2ZX?'    +      E xt- 
t=l t=T+l 
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The last equality holds because fixing XT to X? allows columns indexed by periods r + 1 

to period T to take their optimal values from problem A. Thus 

T-l T-l 
Zca2  + Xsal   > ^ ^«7   + ^o,  +    <£   J^A 

t=l t=T+l 

T-l 
■i4 

t=T+l 

= Zra7 + ]T X, 

Combining this with lemma II.3, we have 

Zca2 +Xf >J2Xt 
T-l 

A 

t=l 

or 

T-l 

_Zca2  _X»I   <-J2Xt
A. 

Thus 

[d-zca2 -x?y < 

t=\ 

T-l "l + 

<*-£*< 
*=i 

= z A 

D 

The results of this section use a very simple problem, but provide the groundwork for 

the remaining research. However, these results must be generalized to multiple commodities 

and other staircase problems before they become useful for the motivating problems of 

this dissertation. During the course of this development, we show that only the proximal 

cascade upper bound holds in a more general setting. Thus, a revised lower bound must be 

developed. That development, as well as the generalization of the proximal cascade, is the 

subject of the remainder of the chapter. 

B.        MULTI-COMMODITY ELASTIC-DEMAND STAIRCASE LP 

Although the single-commodity elastic-demand staircase problem offers interesting 

results with respect to a proximal cascade, its usefulness is limited by the assumption of a 

single-commodity. These next two sections generalize proximal cascade results, first to the 

multi-commodity problem, then to more general staircase models. 
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1.        Inapplicability of Segmented Bounds 

Unlike its single-commodity counterpart, the multi-commodity elastic-demand stair- 

case problem does not easily lend itself to segmented solution. Consider the following 

two-period problem with two commodities referenced by X and Y: 

(Al)   ZA1=mm +Px   +Py 
s.t      Xi +X2             +PX             = 10 

+Yi +Y2             +Py   = 10 
2Xl   +Y1 < 6 
2Xl   +YX +2X2   +Y2                        < 12 

+3X2   +Y2 < 6 
Xi,     Ylt X2,      Y2,     Px,     PY    > 0, 

which has solution 

ZAl = 9, XAl = 1, YX
A1 = 4, XA1 = 0, YA1 = 6, PAl = 9, Pf = 0. 

Also consider the subproblem 

(A2)   ZA2=max   Xx    +YX    +X2 +Y2 

s.t      2XX   +YX < 6 
2XX   +YX   +2X2 +Y2 < 12 

+3X2 +Y2 < 6 
Xlt    n,      X2, Y2, > 0, 

which has solution 

ZA2 = 12, XA2 = 0, Xf = 0, YA2 = 6, y2
A2 = 6. 

Direct extension of the segmented approach to the multi-commodity case requires 

the equivalence of ZA1and [dx + dY - ZA2]+ . However, this does not hold here, since 

ZA1 = 9>S=[dx + dY-ZA2}+. 

The difficulty springs from overproducing the "easy" commodity Y and using it 

to offset under production of X, which consumes more resources. While it is possible 

to redress this shortcoming by retaining the original form of the demand rows, doing so 

eliminates the ability to show that the segmented problem is an upper bound to the proximal 

cascade solution. Consequently, the segmented approximation is not considered further. 

20 



2.        The Multi-Commodity Proximal Cascade 

Despite the inability to use the segmented solution as a bound on the proximal cas- 

cade, a proximal cascade provides an upper bound on the problem of interest, namely a 

multi-commodity elastic-demand staircase problem. Below is the general formulation of 

this problem, where each commodity has an allowable production time window of consec- 

utive periods. This problem will serve as the monolith for the remainder of the chapter: 

INDICES AND INDEX SETS 
i e I       Commodities 
t,t' G T   Time periods 
t eTi      Allowable time periods for initiating production of i 
i! e TSt   Periods of initiated production that consume resources in period t 

DATA 
di Demand for commodity i, due when production begun in the last 

period of Ti is complete 
hi Penalty per unit of not delivering commodity i 
st Production resources available at time t (st > 0) 
aitt> Resource consumption in period t per unit of i begun in period t' 

Thus, aitt> = 0 unless f € TSt 

(in general, aitt' is not restricted to be positive unless specified) 

mRIABLES 
Xit Production of i begun in period t 
Pi Elastic variable for unsatisfied demand of commodity i 

FORMULATION 
(B)     ZB=   min   X>P; 

s.t.    £ Xit + Pi = di V2 € /    (cxi)   (B.l) 

E*    E     aitt>Xit,<st       VteT   (ßt)   (B.2) 
iel t'eTiHTSt 
Xit,Pi>0VieI,teT (B.3) 

Assume B has a finite optimal solution, Xft, Pf   \fi,t. 

Now consider N overlapping subsets of contiguous time periods within set T that 

suggest subproblems (Figures 1 and 2): 
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■n=1 
 n=2 
 n=3 

n=N 
Time 

Figure 1. Sequence of subproblems forming a proximal cascade. The subproblems contain rows and columns indexed by 

overlapping subsets of active time periods. 

Define the following: 

firstp n    First time period of subproblem n 
lastp n    Last time period of subproblem n 
caswid   maxn [lastpn —firstpn] + 1, the proximal cascade subproblem width 
TCn       {teT : firstp71 <t< lastpn}, the active index set of subproblem n 
m max* [| JS"t|] — 1, the maximum resource utilization (staircase) overlap 
v lastp71 —firstpn+l + 1, the number of time periods overlapping each 

subproblem (cascade overlap, assumed to be constant) 
{teT-.firstp71 <t<firstpn+1}  for n< N 
{t e T: firstp71 <t},  for n = N 

the periods of TCn, up to, but not including firstpn+1. 
NC n = {1,..., N}, the set of subproblems forming the proximal cascade 

Note that there are two overlap parameters defined. Parameter m is the staircase 

overlap, and is a characteristic of the LP formulation. In contrast, v is the cascade over- 

lap, and is a proximal cascade parameter. The next chapter discusses the ramifications of 

choosing v. However, v should be at least as large as m in to promote cascade feasibility. 

The above definitions permit specification of N proximal cascade subproblems, 

CAS71. Under the assumption that a finite optimal solution exists, let X£, P? solve 
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TFn (fix after subproblem) 

TCP (active subproblem) 

1 *—r 

' Fixed'        TO Active &' Relaxed 
| 8 

"TC"-1 TC"^ 

Figure 2. A single proximal cascade subproblem optimizes rows and columns indexed by the active set (t eTCn ). Thus 

it re-optimizes rows and columns indexed by time periods active in the previous subproblem, t eTCn~ C\TCn. Rows 

of future time periods are relaxed, future columns are fixed at level 0. Columns of subproblem n that are not active in 

subproblem n + 1 (indexed by t eTFn) are fixed at the end of n. 

(CASn)    Zn = imnY,hiPi 

s.t.  Yl *«+fl = 4-£. E x«   yieI        {CASnj) 

t£TiDTCn n'<n t€T£nTF"' 

J2    E    on** ^St - E E    E    a™x% vt e Tcn 

i£l   t'€TinTStnTCn n'<n   i&I   t'eTinTStnTFn' 
(CAS*.2) 

Xtt, Pi>0     V* € /, * € Tt n TCn. (CAS".3) 

The proximal cascade heuristic proceeds as follows (a detailed pseudocode is given 

in Chapter III): 

For each n €NC { 
Define and solve subproblem CASn given above 
Fix the value of X?t Vi € /, t eTFn 

> Output proximal cascade solution: X?t Viel, t eTFn, n eNC, with value ZN. 

Each subproblem n activates all penalty columns and demand rows, but only the Xit 

columns for t G TCn . However, the subproblems have successively more fixed X?t values 

from previous subproblems. Thus, the demands of the last subproblem N are reduced by 

the solution values from TFl through TFN~X. Similarly, staircase row right-hand-sides are 

reduced by fixed terms from previous subproblems. 
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Single Commodity Subproblem Multi-Commodity Subproblem 

Relaxed 

TC TC 

Figure 3. Unlike its single commodity counterpart, a multi-commodity proximal cascade subproblem excludes both 

columns and rows indexed by future time periods. These rows are required only for the segmented results of the previous 

section, and may cause infeasibility in more general problems. 

In addition to multiple commodities and generalized notation, CAS n differs slightly 

from the single-commodity subproblem CA2. Figure 3 illustrates that a subproblem CASn 

ending with period t activates the staircase rows only up to period t, while the single- 

commodity method activates all remaining rows associated with period t columns. Whereas 

these additional rows are useful when comparing to the segmented solution, they are not re- 

quired in the general case, and may cause infeasibility or reduce solution quality of the 

cascade. For example, consider a model where aiU' is negative for the latter columns of a 

staircase row. Activating the row without those latter columns may force other associated 

columns to unnecessarily low values in order to maintain feasibility. Thus, any staircase 

row whose associated columns are not either active or fixed is not activated in CASn; each 

subproblem ends with the staircase rows indexed by the last period of TC n. 

The following theorem shows that the solution value of a cascade's final subproblem 

(ZN) provides an upper bound on B. 
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Theorem 2.5 ZB < ZN. 

Proof: _ 
ZB =   min Y^hiPi 

s.t. (B.1UB.2UB.2) 

<    min Yl hiR 

s.t. (B.1UB.2),(B.3) 
Xit = Xft     Vn<N,teTin TFn 

=    min Yl h{Pi 

s.t.     {CASN.1),(CASN.2),(CASN.3), 

=    ZN. 

The inequality holds since fixing a subset of Xit restricts the original problem. 

D 

Although similar to the proof given for the single-commodity problem, this proof 

restricts all column levels for t <firstpN to their associated subproblem's value. However, 

fixing only the columns of the overlapping staircase periods (firstp71 - m < t <firstpn, 

Vn eNC) gives the same result, since that restriction results in separable problems, namely 

CASn,VneNC. 

The above proof shows that the proximal cascade solution provides an upper bound 

on ZB. Additionally, the solution given by the cascade result (A£, Vn G N,i€ I, t eTFn) 

is feasible to B, since the rows of B are enforced by the rows of CASn Vn eNC. 

C.       PROXIMAL CASCADES WITH BASIC STAIRCASE LPs 

A proximal cascade is applicable to basic staircase models. This section extends the 

upper and lower proximal cascade bounds (developed for the single-commodity demand 

problem) to a simple staircase problem. 

Consider problem S below. Parameter ht is defined as the objective cost coefficient; 

otherwise the notation is the same as in problem B. 
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(S) Zs = max ^htXt 

t£T 

s.t.   53 a*,Xi' ^St vt G T (iS-7) 

veTSt 
Xt>0 Vt € T (S.2) 

Similarly (using the same notation as in CASn), consider the cascade subproblem SCASn: 

(SCAS
U
) zn = 53 J2 htX?+max 5Z ^ 

n'<n t6TF"' t€TCn 

si. 53     a»'Xt'<   st-5]      5]      a*A?'     VtGTC" (SG4S*\;) 
t'€TStr\TCn n'<nti£TStr\TFn' 

Xt>0 Vt € TCn. (5CASB.2) 

In addition to the formulation differences, SCASn differs from G4Sn by a constant 

term in the objective function. When demand is reduced by previous subproblems, each 

CASn optimal objective value becomes progressively lower. The basic staircase model 

SCASn on the other hand, must explicitly incorporate a contribution from previous sub- 

problems. The solutions from these previous subproblems n' < n are summed only over 

the set TFn' in order to avoid "double counting" columns indexed by periods inside the 

cascade overlap. 

Let Xf Vt G T and Xt
n Vt eTCn solve S and SCASn, respectively (as before, as- 

sume SCASn has a finite optimal solution for all n eNC). The following theorem shows 

that the proximal cascade solution value bounds the monolith solution value from below. 

Additionally, if att> > 0 Vt, f, a proximal cascade also provides an upper bound to the 

monolith solution value. The upper bound is the sum of non-constant objective terms from 

all periods in all subproblems (thus it includes cascade overlap double counting). The lower 

bound is ZN, the sum of objective terms from the non-overlapping periods in all subprob- 

lems. 
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Theorem 2.6 

Zs > ZN,       and ifatt, > 0 Vt, f,    ^   £ Ä*^ > Zs 

Proof:     For the first inequality, 

n€NC teTCn 

Zs   =   max   53 /itXt 
ter 

si. (5.1), (5.2) 

>   max   J2 htXt 
ter 

s.t. (5.1), (5.2) 
Xt = X?   Vn<N,teTFn 

(SP.I) 

=    E EterW'+   max     E   ^Ä   (5P.2) 
n'<iV teTCN 

s.t.   (SCASN.1),(SCASN.2) 

SPi is a restriction of the original problem because all of the solution values are 

fixed except for the last subproblem's values. As with CASn, SCASn is feasible to the 

monolith since the rows of the subproblems jointly enforce the rows 5. 

To show the second inequality, begin with the sum of the non-constant objective 

terms from the proximal cascade subproblems: 

E Ewr-E max 
n€NC t€TCn n&NC 

>  y~J max 
n£NC 

E   htXt 
t€TCn 

s.t. {SCASn.l),(SCASn.2) _ 

= V^ max 
nZNC 

(SL.l) 

(SL.2) 
E   htXt 

t€TCn 

s.t. (5CA5M), (5CA5n.2) 
Xt = 0   Vi € TCn n TC"-1 

E     ***** 
t€TCn\TCn-l 

si. £ a* X* < st Vt 6 TCn\TCn~l 

fzTSt^TC^TC"-1) 
Xt>0 te TC^TC71-1 

(SL.3) 
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E        htXt 
tZTC^TC"--1 

s.t. E        att'Xt, 
Et'erStnTC-1 

max    + £ attfXv < st Vt e TCn\TCn-1 

n&NC t'&TStr\{TCn\TCn-1) 
xt = xt

s Vt € TCn n TCn+1 

Xt>0 Vt e TCn\TCn~'1 

(SL.4) 

= max E ^Ä 

si.   £ o^X* <stVteT (SL.5) 
t'ZTS 

xt>o vt € r 

51.2 is a restriction of SL 7 since all of the columns indexed by periods of the lead- 

ing subproblem overlaps are set to 0. This is a nontrivial restriction if the cascade overlap is 

large. SL.3 is a restatement of 51.2, since no resources are used by columns set to 0, which 

include any columns that might use resources in the remaining active periods. Additionally, 

the row domain of the staircase constraint from SL.3 may now exclude the overlap rows, 

since they contain only constants. These are the only rows that could include fixed terms 

from previous subproblems, so that term may be dropped. SL.4 further restricts the prob- 

lem by including resource consumption of Xf from columns of the preceding subproblem's 

staircase overlap. SL.4 also restricts the problem by fixing (to X?) all the columns that ap- 

pear in the succeeding subproblem's rows. Finally, SL.5 reflects that a subproblem whose 

overlapping staircase values are set to the optimal solution (on either side) must produce 

optimal values when solved. 
D 

This result provides an optimistic bound (upper for a maximization problem) and a 

feasible bound (lower for a maximization) on the monolith, obtained for the computational 

cost of solving the proximal cascade. However, the usefulness of the optimistic bound is re- 

duced by the fact that it tends to be tighter with a minimal cascade overlap (t; = m), while 

the feasible bound tends to be tighter with a large cascade overlap. Additionally, the opti- 

mistic bound requires non-negativity of the technological coefficients, which also restricts 
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its applicability. The next section describes an optimistic bound with wide applicability- 

one that can be used on any staircase problem. 

D.        LAGRANGIAN CASCADE LOWER BOUND 

1.        Development 

Lagrangian relaxation has long been used to bound linear and integer programs by 

solving partitioned subproblems. By partitioning subproblems along temporal lines, each 

can be solved separately by (Lagrangian) relaxing rows that link active periods from differ- 

ent subproblems. The structure of a staircase problem facilitates this, since most rows link 

only a few proximal time periods. 

Multi-commodity elastic-demand staircase problems complicate relaxation along 

temporal lines because the demand rows link many time periods. However, the rows are 

elastic, which establishes bounds on the corresponding dual variables. Consequently, ap- 

propriate penalties in the relaxed problem stay within those limits. 

The biggest advantage of using Lagrangian relaxation in a cascade is the availabil- 

ity of dual information from the associated proximal cascade. One of the weaknesses of 

Lagrangian relaxation is the computational effort required for the multiplier search. That 

search is circumvented by the availability of the proximal cascade's dual variables. 

Consider once again problem 5 with finite optimal solution Xg, Pf   Vi, t: 

ZB =   min   £ hipi 

s.t.    £ Xit + Pi = di Viel       (oi)      (B.l) 

£*   E     ciiWXit,<st       VteT      (ßt)      (B.2) 
ielt'STiDTSt 
xit,Pi>o Viel,teT. (5.3) 

Dual variables are denoted et;, ßt. 

Consider a partition of T into L subproblems (Figures 4 and 5): 
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A=1 
J=2__ 

Time 
"> 

Figure 4. A Lagrangian cascade partitions the rows and columns of a monolith into many Lagrangian subproblems of 

contiguous time periods. Overlapping rows are Lagrange-relaxed. 

The following notation and Figure 5 are also useful: 
firstle The first time period in subproblem £ 
lastle The last time period in subproblem £ 
Iwid majQ [lastle -firstle] + 1, the Lagrangian cascade subproblem width 
TRl {t: firstle <t< {firstle + m)}, I ^ 1. The Lagrange-relaxed set, 

the set of early periods of subproblem £ where staircase 
rows overlap subproblem £ — 1 

TLe {t: max(t £ TRe) <t< lastle} The enforced set, the set of later periods 
of £ where staircase rows do not overlap subproblem £ - 1 

TRLe TRe U TLe The active index set of subproblem £ 
TO1 {t: firstl e-m<t< firstle} The extended set, the set of active periods 

in subproblem £-1 where staircase rows of subproblem £ overlap 
TRL eUTOe   The extended-active set 
ILe {i: Ti n TRLl ± 0, T{ n TRLe+1 = 0} Partition of I into subproblems 

This scheme places i into the last subproblem in i's production window 
CL {1,..., L}, The set of Lagrangian cascade subproblems 

The active index sets (TRLe) may be chosen to closely correspond to the proximal 

cascade active sets, TCn, or can be intentionally offset from those sets in order to improve 

the latter's dual variables. These strategies are discussed in the next chapter. Given these 
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TRL' 

/        TR { / 

■#■ 

Lagrange- 
Relax & 

(Optimize                          Optimize i // 
■= —" " z~t    *r~ •4->                 • 55 ■ A 5s      Ignore Ignore to w       " 

n 
m 

Figure 5. A single Lagrangian cascade subproblem includes columns indexed by t €TRLe (the active set), and rows 

indexed by t €TLl. Other rows are relaxed, and a Lagrangian penalty is applied to the objective function coefficients of 

the associated active columns (referred to as Lagrange-relaxed rows). An extension tightens the Lagrangian cascade bound 

by activating "extended constraint" rows indexed by t €TRe (the Lagrange-relaxed set). These rows use "duplicate- 

columns indexed by t €TOe in order to preserve the relaxation. 

sets, define the Lagrangian cascade subproblem LC: 

ZLC =   min   J2hiPi (ZCJ) 

+ $>i(*- Ex«- Pi) 
i€/      V        teTi / 

+   E   AU-E   E   «**** 
s-t.    E     E     a«.X^<5, VteU/TZ/   (IC.2) 

Xit,Pi>0 Viel ,t£T. {LC.3) 

The objective (IC.i ) seeks to minimize the sum of unsatisfied demand, plus Lagrangian 

penalties either associated with demand rows, or the staircase rows of the relaxed set. The 

remaining structural constraints include only the staircase rows of the enforced set. 

Because all of the linking rows between subproblems are Lagrange-relaxed, LC de- 

composes into L subproblems with ZLC = E* &■ Note a*is bounded above by hi, and 

thus the Pi term is not favorable, and will remain at 0. It is left in the formulation for com- 

pleteness. The subproblems LCe are defined as 
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Z< =   min    E Pi{hi-ai)+ E ^ (LC^1) 

-E   E   <**«+   E  &*t 
te/ t€TÄL£ t&TR1 

-E     E E      /W** 
ie/ teTReUTRe+1 t'€.Tir\TStnTRLe 

8.t.   E     E     aitt,XiV<st VteTL*   (LC*.2) 

Jf«, Pi > 0 Vz G 71/ , i € TPZ/. (LC£.3) 

Relaxing the problem in this manner allows the tractable computation of a lower bound on 

ZB. By the theorem of weak Lagrangian duality [Parker and Rardin, 1988, p. 206], 

zLC = Y,zl<zB. 
i 

A Lagrangian cascade proceeds as follows (a detailed pseudocode is given in Chap- 

ter III): 

For each £ &CL { 
Define and solve subproblem LCe given above 
Record the value of Ze 

Output the Lagrangian cascade solution value: E* %*• 

As stated earlier, the quality of this bound depends in large measure on the quality of 

the dual variables. These variables, in turn, depend on the quality of the proximal cascade 

solution. As the proximal cascade solution tends toward the optimal monolith solution, 

the associated duals will tend toward the optimal monolith dual solution. Hence, there is 

strong incentive for making the proximal cascade solution as close to the monolith solution 

as possible. 

2.        Improving the Lagrangian Cascade Bound 

Although optimal Lagrange multipliers ensure a tight lower bound on the problem 

under consideration, small deviations in multiplier accuracy may produce an unacceptable, 

or even unbounded result. This may be avoided by bounding the feasible region of the La- 

grangian cascade subproblems. This section addresses two bounding techniques, extended 

constraints and demand bounding. 
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a.        Extended Constraints 

A Lagrangian relaxation cannot be unbounded if all its variables are bounded. 

Using a Lagrangian cascade, we show here that a simple and effective bound on vari- 

ables is generated by extending the staircase constraint enforcement into each subproblem's 

Lagrange-relaxed set, TRe. However, to avoid a problem restriction, associated columns in- 

dexed by periods of the overlap set (TOe) are not identical to their monolith counterparts. 

These columns are "duplicates," and are denoted Xit. This method of generating dupli- 

cate columns for the purpose of bounding variables inside the active index set is described 

below. 

Consider problem B, which is identical to B, but with constraint blocks BA 

and B.5 added: 

ZB = 
min    E h%Pi 

i£l 

s.t. ZXu+Pt-di Wei (B.i) 
teTi 

Xit,Pi>0 VieI,t€T (A3) 

E        E        aMXitl + Z        E        at*Xw<8t Vte[JeTRe      (BA) 
«e/ t'<=TinTStr\TOe                  »e/ t'<=Tir\TStnTRe _ 
Xit>0 \/£eCL,i£l ,teT \JeTRe. (B.5) 

BA duplicates all staircase rows for all of the relaxed sets \JtTRl. However, 

within each subproblem, only the columns indexed by t eTRLe correspond to monolith 

columns. Columns indexed by t eTOe are duplicated; duplicates do not appear in other 

subproblems. Because of duplication, these rows cannot restrict the solution to B. 

Theorem 2.7 
ZB > ZB. 

Proof: Let Xit = XB    Vi,t € \JtTRe. Since XB satisfies B.2 from the original 

problem, Xit must satisfy (5.4), which means XB is feasible to B. Thus, ZB can be no 

worse than ZB. a 
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In fact, ZB = ZB, since the duplicate columns do not contribute to the objec- 

tive, nor do they allow the original columns to further contribute to the objective. However, 

this is not central to the overall result, which is to show that a Lagrangian relaxation of B 

is still a relaxation of B. 

Since any Lagrangian relaxation of B provides a lower bound for B, one 

that relaxes B.l Vi, and B.2 Vi G (J^7^ ^ provides such a bound. Defining the solution 

value of this relaxation to be ZLC, we have 

ZB > ZB > ZLC. 

The solution to the relaxation of B offers the benefit of bounding all variables 

in the Lagrangian cascade. Since its implementation only involves generating duplicate 

variables as the Lagrangian cascade progresses, this strategy may provide significant benefit 

with minimal computational effort. 

The extended constraints result has wide applicability to Lagrangian relax- 

ation. Consider the following staircase problem: 

Z*   =   max     CiXi     +c2X2 +C3Z3 
s.t.   AnXi < h 

A21X1    +A22X2 < &2 
A32X2 +^33^3   < h 

xi,          x2, x3   > 0. 

This problem can be separated into two subproblems by relaxing the second constraint: 

ZLR   =   max    cjxx   +c%x2 +cjx3 + ß2 {b2 - A21xi - A22X2) 
s.t.   Anxi < 61 

A32X2 +^33^3 < h 
xi,        x2, xa > 0. 

Alternatively, we can form separable subproblems by duplicating x1 and using the extended 
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constraints Lagrangian relaxation: 

ZELR    =    max       cTXi                         +CTX2 +CTX3     + ß2 (&2 _ A2lXl _ A22X2) 

s.t.   AnXi < h 
A21X1   +A22X2 < b2 

A32x2 +433Z3   < h 
xi,       xi,          x2, £3   > 0. 

Both ZLR, and ZELR provide upper bounds for Z*, but ZELR provides a tighter bound by 

Theorem II.7: 

Z* < ZELR < ZLR. 

To illustrate the benefits of extended constraints, consider the following stair- 

case LP: 
max   2XX   +4X2   +X3 

s.t.     Xi <    2 
X1     +X2 <    3      (ß2) 

X2   +X3   <    4 
xlt     x2,    x3  > 0. 

A solution to this problem is: X2* = 3, X3* = 1, with value 13. Lagrangian relaxation of 

the second row results in the following for ß2 > 0: 

max   2XX   +AX2 +X3 + ß2(3 - X! - X2) 
s.t.     Xi < 2 

X2 +X3 < 4 
Xu      X2, X3 > 0. 

When ß2 = 1, the above may be rewritten as 

3   +max   Xi +max   3X2   +X3 

s.t.   Xi   <   2 s.t.     X2   +X3   <    4 
xx  > 0 x2,    x3  > 0. 

This has a solution Xx = 2, X2 = 4, with value 17, which is an optimistic bound on the 

first problem, Z* = 13. However, the bound may be tightened by duplicating Xi with Xi, 
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and incorporating the method of extended constraints: 

3   +max   Xi                 + max   _ ZX2 +X3 

s.t.   Xt   <   2           s.t.   Xi +X2 < 3 
.    Xx   >   0                    _ X2 +XZ < 4 

Xi x2, X3 > 0. 

This has solution Xx = 2, X2 = 3, with value 14, resulting in a tighter bound than 17. 

b.        Demand Bounding 

In addition to the method of extended constraints described above, the qual- 

ity of the Lagrangian cascade solution may be improved by assuring that each subproblem 

satisfies no more demand than the total required by a Lagrange-relaxed demand row. 

Consider problem B, which is identical to B, but with additional constraint 

stipulated by B. 4 : 

(B)     ZB =   min   ^hPi 

s.t.   |xa+ Pi = di   VzG/ (B.1) 

E     Xit<di   VieI,VieCL      (BA) 
teTiHTRLe 

(B.2),(B.3). 

Note that BA is redundant given B.l in this formulation, but ceases to be so when B.l is 

relaxed. Hence, B and B are equivalent, but the relaxation of B provides a better lower 

bound on ZB. 
Demand bounding also applies to Lagrangian relaxations of more general 

mathematical programs. Given that all elements of A21 and A22 are non-negative, consider 

how demand bounding can tighten the solution bound of a simple staircase problem: 

■* =   max     cjxx +c%x2 +<$x3 

s.t.   AixXx < bx 
^21^1 +A22x2 < b2 

A32Z2 +A33X3 < bs 
Xx, £2, X3 > 0 
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<   max     cjxi   +c2x2 +cjxz   + ß2 {b2 - A21xx - A22x2) 
s.t.   Anxi < h 

A2\x1 < b2 

A22x2 < b2 

A32x2 +A33X3   < 63 
xx,        x2, x3   > 0 

<   max     c[x1   +<^x2 +C323 + ß2 {b2 - A2ixi - A22x2) 
s.t.   Anxi < bx 

A32x2 +A33X3 < 63 
xi,        x2, x3 > 0. 

Z* is bounded above by the Lagrangian relaxation with demand bounding (middle), which 

is bounded above by the un-enhanced Lagrangian relaxation (bottom). 

E.        SUMMARY 

This chapter develops bounds for staircase problems using proximal and Lagrangian 

cascades. A proximal cascade provides an upper bound (if a minimization problem) by 

solving a sequence of subproblems. Under the restricted condition of non-negativity of the 

constraint coefficients, modifying the proximal cascade solution value also provides a lower 

bound on the monolith solution value. 

A Lagrangian cascade provides an optimistic bound for the staircase problems de- 

scribed in this chapter. Lagrangian cascades avoid traditional multiplier searches by using 

dual information from the proximal cascade. Together, proximal and Lagrangian cascades 

offer an alternative to solving a linear program monolith. 
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III.       PROXIMAL AND LAGRANGIAN CASCADE HEURISTICS 

This chapter serves as a transition between theory and implementation of the proxi- 

mal and Lagrangian cascades. Each cascade type is dealt with separately, beginning with a 

description and pseudocode. A discussion of cascade parameter selection ensues, followed 

by an overview of model characteristics that may allow cascade solutions of good quality. 

We use problem B from Chapter II as an example to develop the heuristics. Tune 

serves as the cascade set for this multi-commodity elastic-demand staircase problem. De- 

mand rows (indexed by i) have the null cascade index. Additionally, coefficients (aitt>) may 

be negative and rows may represent equalities or inequalities. We assume that staircase 

rows are indexed by the greatest time period of any associated column. 

A.        THE PROXIMAL CASCADE 

1. Description 

We initialize a proximal cascade with the selection of two parameters: 1) cascade 

width, caswid, and 2) cascade overlap, v. For subproblem n, define 

firstpn = (n - 1) • [caswid —v) + \ 
lastpn = min [T, (n - 1) • (caswid - v) + caswid] 

for n = {1,..., N} such that lastp"-1 < T, lastpN = T. Using these definitions, the sets 

TC n and TFn are as defined in Chapter II, Section B.2. 

A proximal cascade subproblem consists of active columns and active rows that 

have been adjusted for the levels of fixed columns. Fixing a column implies adjusting the 

right-hand-sides of all associated active rows for resources consumed, and adjusting the 

objective function value by the objective contribution of the column level. 

The following rules provide a guide for solving a proximal cascade: 
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• Form the first subproblem: 

Activate all columns indexed by t e TC1 (production columns, Xit), plus all 
columns indexed only by i where TC1 n Tt ^ 0 (elastic columns, Pi). 

Activate rows indexed by t e TC1 (staircase rows), or i 3 TC1 n Tt ^ 0 
(demand rows). In Chapter IPs description of proximal cascades, demand rows 
and elastic columns are active in every subproblem; selectively activating these 
rows and columns reduces subproblem size without altering the cascade solution. 

Solve the subproblem. 

• Update the cascade to subproblem n: 

Relax active rows indexed by: 1) t £ TCn, or2)i3 TCn D T{ = 0. Fix active 
columns that meet either of these two criteria. 

Activate rows indexed by t € TCn or i 3 TCn n Tt ^ 0. Activate columns that 
meet the same criteria. 

Solve the subproblem. 

Repeat the cascade update until the final subproblem is solved. 

The objective value of the final subproblem is the proximal cascade solution value. 

A feasible proximal cascade solution is also feasible to the monolith because all columns 

are fixed only after satisfying associated rows. 

2.        Pseudocode for a Proximal Cascade 

We supplement the guide above with pseudocode for a proximal cascade. This code 

makes use of the same notation and assumptions as before. Additionally, define a candidate 

row or column as one that has never been active. 

Procedure Proximal Cascade 
INPUT: caswid, v, monolith LP B 
OUTPUT: proximal cascade objective value, proximal cascade solution 

{ 
upper Jbound = 0 
lastp = 0 
n = l 
while (lastp < T) { 

firstp = (n - 1) • (caswid —v) + 1 
lastp = min [T, (n — 1) • (caswid - v) + caswid] 
TC = {t: firstp <t< lastp} 
if (n > 1) { 

for each active row, { 
if ((row indexed by t e TC) or (row indexed by i 3 TC n T* = 0)) { 
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relax row 
} 

} 
for each active column { 

if ((column indexed by t € TC) or (column indexed by i 3 TC n T* = 0)) { 
add column level • column objective coefficient to upper Jbound 
for each active row associated with column { 

adjust row RHS by subtracting column level • column coefficient 

} 
record column level 
make column inactive 

} 
} 

} 
for each candidate row { 

if ((row indexed by t G TCn) or (row indexed by i 3 TC D Tt ^ 0)) { 
make row active 

} 
} 
for each candidate column { 

if ((column indexed by t e TC) or (column indexed by i 3 TC n T{ ± 0)) { 
make column active 

} 
} 
solve subproblem 
n = n+ 1 

} 
add final subproblem's active objective terms to upper.bound 
record final subproblem's active column levels 
report upper Jbound as the proximal cascade objective value 
report recorded column levels as the proximal cascade solution 

} 

3. Parameter Selection 

a.        Selection of Cascade Width, caswid 

Two considerations often limit cascade width, caswid. The appropriate level 

of model myopia dictates a corresponding cascade width. Computational considerations can 

also limit cascade width; a few large subproblems take longer to solve than many short ones 
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if the cascade overlap is small. 

Usually, the proximal cascade solution quality increases as cascade width 

increases. Intuitively this is suggested by the fact that selecting caswid = T results in solv- 

ing the monolith. However, smaller cascade widths can (counter-intuitively) improve the 

proximal cascade solution quality. Consider a 2-commodity, 4-period instance of problem 

B: 

ZB      =        min Px    +PY 

s.t. 
Xx               +X2 +X3                 +X4             +PX            =10 

Yi +Y2                   +Y3                   +Y4              +PY   =20 
2Xi   +4Yi <20 

2XX   +4YX   +10X2 +IOY2                                                                           <20 
10X2 +10Y2   +2X3   +IOY3                                                  <20 

2X3   +IOY3   +IOX4   +Y4 <20 
Xlt       Yi,        X2, Y2      X3,         Y3,         X4,      Y4,     Px,      Py     > 0. 

Here, Xf = 10, Y4
B = 20, ZB = 0 solves the above (unstated variable 

levels are 0 both here and below). 

Now consider a proximal cascade solution with caswid = 2, v = 1 (3 sub- 

problems): 

ZB1=   min Px    +PY 
s.t.     Xi +X2                  +Px              =10 

Y +Y2               +Py   =20 
2Xi   +4Yx <20 
2Xx   +4Yx +10X2   +10Y2                        <20 
Xx,       Yi, X2,          Y2     Px,      Py     >0 

(note: Xf1 = 10, P^1 = 20, Zm = 20), 

Zm =min Px     +Py 
s.t. 
X2 +X3 +Px             =10-Xfx 

+Y2 +Y3                 +Py   =20-Y1
B1 

10X2 +10Y2 < 20 - 2Xf! - 4Y*1 

10X2 +10Y2 +2X3   +IOY3                        <20 
X2,         Y2, X3,       Y3,      Px,     Py      >0 

(note: XB1 = 10, Y3*
2 = 2, P#2 = 18, ZS2 = 18), and 
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s.t. 
X3 

min Px +PY 

+x4 +Px = 10- - xBl - xp 
+Y3 +Y4 +PY = 20- \rBl       \rB2 

2X3 +ior3 <20- - 10X2
B2 - lOKf2 

2X3 +ioy3 +10X4 +Y* <20 
Xs, *3, x*, *4, Px, PY >0 

(note: Yf3 = 20, Zm = 0). Thus, the proximal cascade solution is XB1 = 10, Y4
ß3 = 

20, ZBZ = 0, as in the monolith. 

However, setting caswid = 3 (and v = 1, resulting in 2 subproblems) pro- 

duces a larger objective value: 

ZBV     =      min Px    +PY 

s.t.      Xx +X2                   +X3                 +PX              =10 
n +Y2                   +Y3                +PY   =20 

2Xi   +4Yi <20 
2Xt +AY1 +10X2 +ior2 <20 

IOX2   +10Y2   +2X3   +IOI3 <20 
Xi,       n,        X2, Y2      X3, y3,     Px,     PY     >0 

(note: YBl' = 5, X3
B1' = 10, P51' = 15, Zm' = 15), and 

ZB2'=   min Px     +PY 

s.t. 
X3 +X4 +PX = 10-XB1'-XB1' 

+Y3 +y4 +PY   = 20-YBl'-Y2
m' 

2X3     +IOY3 < 20 - iox2
B1' - IOY2

S1
' 

2X3     +ioy3 +10X4 +Y4 <2o 
X3, F3, X4,      y4,    Px,     Py      >0 

(note: X£2' = 2.5, Y4
B2' = 15, P|2' = 7.5, ZB2' = 7.5). Consequently, this proximal 

cascade solution is YBV = 5, X3
B2' = 2.5, YB2' = 15, PB2' = 7.5, Zm' = 7.5. Note that 

the second subproblem is shortened by the problem's last period, T. 

Analysis of the above results shows that the caswid = 3 case is "tricked" into 

producing commodity Y early in period 1, while the caswid = 2 case avoids this mistake. 

Thus, the more myopic cascade has higher solution quality than the less myopic one, in this 

instance. 
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b.        Selection of Cascade Overlap, v 

As with the cascade width, selection of the overlap parameter v affects the 

quality of the proximal cascade solution significantly. At one extreme, setting v —caswid—1 

tends to produce higher quality solutions, because each subproblem moves forward only one 

time period, and re-solves columns of caswid -1 periods. This increases the ability of each 

subproblem to respond to new choices and restrictions posed by the added columns and 

rows. 

Large cascade overlaps also preserve more of the optimal basis from sub- 

problem to subproblem, so each solve may require fewer pivots if a simplex algorithm is 

used. However, even an advanced basis may not overcome the additional computations as- 

sociated with large overlaps, so the overall solution time may be longer. Indeed, the results 

of the case study confirm this. 

At the other extreme, the cascade overlap v may be set equal to the staircase 

overlap m. This approach nünimizes the number of subproblems, but may lower solution 

quality. However, if all non-elastic rows have sense "<" and positive coefficients, feasibil- 

ity is ensured by setting v to any value greater than or equal to m. This is shown by noting 

that any new staircase row (not previously active) of a subproblem includes columns from at 

most m periods prior to the staircase index t. By setting v > m, none of these columns are 

fixed; hence, all may be set to 0, satisfying the row trivially. On the other hand, ifv<m, 

infeasibility may result. 

Consider the following single commodity elastic-demand staircase problem 

with 5 periods and m = 2: 

Z*=   min P 
s.t.    X1    +2X2 +X3   +X4   +X5   +P   = 10 

X1 < 2 
Xi     +X2 < 2 
Xx     +X2 +X3                                  < 2 

+2X2 +X3   +XA                       < 2 
+X3   +Xt   +X5 < 2 

X\,      X2, X3,     X±,     X5,     P    > 0. 
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Here, X{ = 1, X2* = 1, X5* = 2, P* = Z* = 5. 

Now, consider a proximal cascade with caswid= 3, v = 1 

Z1 =   min P 
si.    Xi    +2X2   +X3 +P   = 10 

Xx < 2 
Xi     +X2 < 2 
Xx     +X2   +X3 < 2 
Xl5      X2,    X3, P    > 0 

(here, X\ = 2, P1 = Z1 = 6), and 

z2 = min p 
si.    X3 +x4 +X5 +p = 10 - X{ - 2X1 

x3 < 2 — X1 — X2 

x3 +x4 < 2 - 2X\              (infeasible) 
x3 +x4 +x5 < 2 
x3) X4, X5, p > 0. 

This subproblem is infeasible since the right-hand-side of the third row is negative. The 

example shows that setting the cascade overlap less than the staircase overlap can, in some 

cases, result in infeasibility. 

4. Desirable Model Characteristics for the Proximal Cascade 

There are several model characteristics of the multi-commodity elastic-demand stair- 

case problem that significantly affect the quality of the proximal cascade solution, the fore- 

most being linkage. Demand and staircase rows with large widths link many time periods, 

requiring more rows to be active in multiple subproblems. Since later subproblems do not 

communicate these rows' resource costs to earlier subproblems, the earlier subproblem is 

more apt to make decisions that degrade solution quality. 

Large staircase overlaps tend to reduce solution quality. Large overlaps result in 

more relaxed rows associated with columns of the active index set (at the end of a sub- 

problem). Additionally, large overlaps cause more fixed columns from earlier subproblems 
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to alter active rows. Either condition increases the opportunity for earlier subproblems to 

make decisions that severely affect solutions of subsequent subproblems. 

Cascade solution quality can be degraded when the model is formulated without 

time-discounted demand penalties. Consider a 2 commodity, 3 time period instance of B: 

Z* = min P\   +P2 
s.t.    Xn +Pi =   2 

X22     +^23 +P2     =     2 
Xn <   2 
X\\   -\-X22 —   ^ 

X21     +-^23 —     2 
Xn,     X22,     X23,     Pi,      P2   >   0. 

This problem has solution Z* = 0, Xn = 2, X2*3 = 2. Now define proximal cascade 

subproblems by letting caswid= 2, and v= 1 : 

Z1=min Pi   +P2 
s.t.    Xu +Pi            = 2 

X22 +-P*2   = 2 

Xn < 2 
Xn   +-X22 — 2 
Xn,     X22, Pi,      Pi   > 0 

One of the alternate optimal solutions to this subproblem is Z1 =2, X22 = 2, P1 =2. 

Another optimal solution is Z1 = 2, Xjx = 2, P2
X = 2. 

Z2=min Pi   +P2 
si. Pi =   2-*!1! 

X22   +X23 +P2   =   2 
X22 <    2-Xu 

X12    +-^23 —     2 
X22,    X23,   Pi,     P2   >   0. 

Subproblem 2's solution is monolith-optimal when X\x = 2, but not when X\x = 0. En- 

suring that subproblem 1 chooses Xn = 2 can be accomplished by time-discounting the 

penalties. Changing the monolith's objective coefficient on P2 to a value strictly between 0 

and 1 would result in the correct prioritization of demand satisfaction by subproblem 1. 

Finally, side constraints can reduce solution quality of a multi-commodity, elastic- 

demand staircase model that is solved by cascade. Rows associated with columns indexed 

by a single period present no difficulty; they are analogous to staircase rows with no over- 
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lap. On the other hand, rows that link many periods present a greater challenge, and must 

be assessed individually with respect to cascade feasibility. The case study of the next chap- 

ter exhibits an example of this challenge. The Air Force model includes a "utilization rate 

constraint," which, in the terminology of this chapter's example, limits the average utiliza- 

tion of production resources over many time periods. It is dealt with by aligning the periods 

over which utilization is averaged with the cascade subproblems. Chapter V also addresses 

these situations. 

B.        THE LAGRANGIAN CASCADE 

We now describe how to select and solve Lagrangian cascade subproblems from the 

monolith. Unlike a proximal cascade subproblem, each Lagrangian cascade subproblem 

preserves none of the previous subproblem's solution; it activates an entirely new set of 

rows and columns. However, a Lagrangian cascade is complicated by objective function 

coefficient adjustments, demand bounding, and extended constraints. 

1.        Description 

We initialize a Lagrangian cascade by specifying the Lagrangian cascade width, 

Iwid. For subproblem £, define 

firstl1 = (£ - 1) • Iwid + 1 
lastle = min [TJ-lwid] 

for I = {1,..., L} such that lastlL-1 < T, lastlL = T. The sets TRLe and TOe are as 

defined in Chapter II, Section D. 1. 

Lagrangian cascade subproblems may be solved in any order. The following rules 

provide a guide to solving Lagrangian cascade subproblem t. 

• Activate rows whose associated columns are indexed by i, or by t eTRL. 

• Lagrange-relax rows that are associated with a column indexed by t eTRL1 and 
another column indexed by t £TRL£. 

• Activate and Lagrange-relax rows that serve as demand bounding rows or ex- 
tended constraint rows (these techniques are discussed in Chapter II). Rows in- 
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dexed by i are demand rows; activate (and Lagrange-relax) these rows with sense 
" <" if some, but not all associated columns are indexed by t eTRL. Activating 
extended constraint rows is more complex; these rows are activated if they have 
associated columns that meet criterion 3, described below. 

• Activate columns that meet any of these three criteria: 

1) the column is indexed by i 3 T{ C TRL£. These columns correspond to 
elastic penalty variables for demands that can only be met in this subproblem. 

2) the column is indexed by t eTRLe. These columns correspond to those of the 
active index set. 
3) the column is indexed by t € TOe. These correspond to duplicate columns of 
the "extended constraint" rows. Activate these columns with an objective func- 
tion coefficient of 0. Activate rows associated with these columns if they are 1) 
indexed by t € TRLe, or 2) the corresponding sense is "<", and all coefficients 
are non-negative. These rules preserve the Lagrangian bound. For example, in- 
cluding an "equality" row indexed by t € TO1 might cause an infeasibility, since 
not all columns associated with this row are active. 

• Solve the subproblem 

The lower bound of a multiple-commodity elastic-demand staircase problem equals 

the sum of all Lagrangian cascade subproblem objective function values, plus all Lagrange- 

relaxed right-hand-sides multiplied by the associated Lagrange multipliers. The quality of 

that bound is dependent on Iwid, the proximity of the multipliers used to the monolith- 

optimal multipliers, and the structure of the problem. 

2.        Pseudocode for a Lagrangian Cascade 

We supplement the guide above with pseudocode for a Lagrangian cascade. This 

code makes use of the same notation and assumptions as the proximal cascade pseudocode 

Procedure Lagrangian Cascade 
INPUT: Iwid, monolith LP B, Lagrange multipliers from the proximal cascade 
OUTPUT: Lagrangian cascade objective value 

{ 
lower Jbound = 0 
lastl = 0 
£ = l 
while (lastl < T) { 

firstl = {£-!)■ Iwid + 1 
lastl = min [T, £ ■ Iwid] 
TRL = {t: firstl < t < lastl} 
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TO = {t: firstl -m<t< firstl} 
for each candidate column { 

if (column indexed by i 3 % C TRL) { 
activate column 
activate all rows associated with column 

} 
if (column indexed by t € TO) { 

activate column 
change column's objective coefficient to 0 
for each row associated with column { 

if ((row's sense is " < ") and (all row's coefficients > 0)) { 
activate row 

} 
if (row indexed by t € TRL) { 

activate row 
} 
if ((row indexed by i) and (row's sense is " = ")) { 

activate row 
change row's sense to "<" 

} 
} 

if (column indexed by t e TRL) { 
activate column 
for each row associated with column { 

if (row is relaxed) { 
add row's dual multiplier to column's objective coefficient 
if (row not indexed by t > lastl) { 

activate row 
if (row is not indexed by t) { 

change row's sense to "<") 
} 

} 
} 
else { 

activate row 
} 

} 
} 

} 
solve subproblem 
add objective value to lower .bound 

} 
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for each relaxed row called row { 
add row's dual multiplier • row's RHS to lower-bound 

} 
report lower Jbound as the Lagrangian cascade objective value 
} 

3.        Parameter Selection 

a.        Selection of Lagrangian Cascade Width, Iwid 

Lagrangian cascade solution quality should tend to improve as Iwid increases. 

Additionally, knowledge of the problem being solved may be useful when selecting Iwid. 

Prior insight as to where the dual multipliers have small absolute values may allow selec- 

tion of rows that can be relaxed without significantly altering the objective function value. 

In an extreme (and unrealistic) case, Iwid might be chosen so that all the Lagrange-relaxed 

rows have optimal monolith solution multipliers of zero, suggesting that the problem in- 

stance is effectively separable. Since prior knowledge of where weak duals occur is not 

likely, this topic is not pursued further. 

A related issue regards selecting Iwid based on the prior selection of caswid 

and v. Proximal and Lagrangian cascade subproblems whose time periods roughly coincide 

require that multipliers from the beginning and end of a proximal cascade subproblem be 

used by the Lagrangian cascade subproblem. Alternatively, choosing Iwid so as to avoid 

alignment of firstl and firstp exploits the conjecture that the values of the multipliers 

may be more likely to resemble the monolith-optimal ones far from the ends of a proximal 

cascade subproblem. 

As with a proximal cascade, a larger Lagrangian cascade width results in 

fewer subproblems and fewer Lagrange-relaxed rows. But, unlike the proximal cascade, 

the Lagrangian cascade solution cannot produce a weaker bound when two subproblems 

are merged by activating the intervening Lagrange-relaxed rows. Thus, two Lagrangian 

cascade subproblems should always be merged if problem size allows. To show this, define 

TR' C UeTR* to be a subset of the relaxed periods of the Lagrangian cascade LC given 
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in Chapter II. Further, define problem LC (with solution value ZLC') to be a Lagrangian 

relaxation of the same form as LC but with only the staircase periods for t e TR' Lagrange- 

relaxed. Then, the following relationship holds between the solutions of LC, LC, and B : 

Theorem 3.1 ZB > ZLC' > ZLC. 

Proof:   The left-hand inequality is immediate by the theorem of weak Lagrangian duality. 

The right-hand inequality also follows using weak Lagrangian duality, as 

well as the relationship TR' C UeTRe: 

ZLC' =   min   J2hiPi 

+ E a» I di - E Xu — Pi 
i&I        \ t€Ti 

+ E A  st~E   E   Oitt'Xit' 
tent'      \       iei t'eTitiTSt 

s.t.    E     E     aitt,Xit,<st Vt^TR' 
iei t'eTiOTSt 
Xit,Pi>o Viel ,teT 

>    min    E hiPi 

+ Y:oi(di- Ex*- Pi) 

+   E   ßtlst-E   E   aitt>Xit> 
te(UeTR*)        \ i€lt'£TinTSt 

s.t.    E     E     (ku'Xw^st Vt£üeTRe 

ie/ t'eTiDTSt 
Xit,Pi>o Viel,teT 

=   ZLC. a 

Thus, combining Lagrangian cascade subproblems cannot reduce solution 

quality. Moreover, combining subproblems results in fewer relaxed rows, so solution quality 

should usually improve. 
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b.        Selection of Dual Multipliers 

The similarity of the Lagrange-relaxed row penalties to the monolith's op- 

timal dual multipliers is key to the quality of a Lagrangian cascade objective value. This 

similarity is a function of 1) the overall quality of the corresponding proximal cascade, 2) 

which proximal cascade subproblem is chosen to provide the multipliers, and 3) the ap- 

propriateness of any modifications made to the multipliers. Improving the quality of the 

proximal cascade is discussed earlier. In this section we discuss how to choose the best, or 

best combination of subproblems from which to select multipliers. We also discuss what 

modifications to these multipliers might improve the Lagrangian bound. 

We offer two methods for selecting the proximal cascade subproblem from 

which a Lagrangian multiplier is chosen. The finalper method chooses the multiplier 

associated with the last subproblem in which the corresponding row is active. For example, 

a demand row associated with columns indexed by periods 5 through 25 may be active 

in numerous subproblems. Selecting the last subproblem in which period 25 is active may 

give the best representation of the difficulty required to satisfy that particular demand. Since 

earlier subproblems include only a limited number of time periods to meet the demand, the 

Lagrange multiplier may reflect an exaggerated marginal cost of constraint satisfaction. 

A more promising technique of multiplier selection averages the dual mul- 

tipliers from all subproblems in which a row is active, weighted by the number of periods 

active in that row. This strategy allows the dual variable to reflect a temporal sampling 

of the resource costs involved in satisfying that constraint. This method, avgper, provides 

better bounds in the case study, and is used throughout. 

A potential difficulty of multiplier selection involves the situation where 

finalper or avgper computes a penalty for a Lagrange-relaxed demand row that is zero 

or close to zero. The resulting incentive for a Lagrangian cascade to satisfy demand is 

negligible-an unlikely situation if the optimal multiplier is used. This discrepancy is re- 

dressed by employing a pair of heuristic parameters, minfrac and mdmin. minfrac specifies 

a threshold fraction for a demand row multiplier, mdmin specifies the modified amount. If 

any demand row multiplier is less than minfrac multiplied by the average of the demand 
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multipliers, its value is reset to mdmin times that average. This technique is used throughout 

the case study. 

4.        Desirable Model Characteristics for the Lagrangian Cascade 

Model characteristics that affect the solution quality of a proximal cascade can be 

expected to have a similar affect on the solution quality of a Lagrangian cascade. Minimiz- 

ing the number of Lagrange-relaxed rows is paramount; hence, smaller staircase overlaps 

should be better. Small row widths also reduce the number of relaxations. Finally, models 

that include any side constraints whose columns force a relaxation (by being active in more 

than one subproblem) may often reduce the solution quality of a Lagrangian cascade. 

C.        SUMMARY 

This chapter details the proximal and Lagrangian cascade heuristics using a sim- 

ple model structure, the multi-commodity elastic-demand staircase linear program. These 

methods must be implemented on a complex model to be of real use. Consequently, the 

next chapter is devoted to applying the cascades to the problem motivating the dissertation, 

namely, the Air Force mobility problem as modelled by the NPS/RAND Mobility Optimizer. 
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IV       THE NPS/RAND MOBILITY OPTIMIZER 

A.        INTRODUCTION 

The NPS / RAND Mobility Optimizer (NRMO) is under development as an alter- 

native and compliment to simulation for USAF strategic airlift analysis. Designed in the 

summer of 1996, it is the consolidation of mobility optimization models from NPS [Mor- 

ton, Rosenthal, and Lim, 1995] and RAND [Killingsworth and Melody, 1994]. The project's 

sponsor is the USAF Studies and Analyses Agency, Global Mobility Branch. 

Strategic airlift is defined as: "...the movement of units, personnel and material in 

support of all Department of Defense agencies between the continental United States and 

overseas areas" [US Air Force, 1992, p. 301]. Although this definition embodies many 

missions, a primary goal of strategic airlift is to maximize the on-time delivery of combat 

and support forces to any foreign region specified by the national command authorities. 

NRMO represents strategic airlift as a multi-period, multi-commodity network-based LP 

with a large number of side constraints. A model instance provides insight into mobility 

issues such as aircraft fleet and infrastructure adequacy, as well as the identification of 

system bottlenecks. Multiple scenarios may be used to address questions of fleet selection 

and airfield improvements. 

There are four primary input requirements of the NRMO LP: 1) the required cargo 

and passenger movements as delineated by the Time Phased Force Deployment Document 

(TPFDD), a widely used planning database, 2) the types and numbers of available aircraft 

and crews, 3) the usable airfields, and 4) the allowable routes for each aircraft type. The LP 

minimizes the weighted sum of late and undelivered cargo penalties, subject to restrictions 

such as aircraft flow balance, aircraft payload, and airfield capacity. The solution speci- 

fies the airlift mission assignments by requirement moved, aircraft and route flown, and 

time delivered. From this output, information such as unit closure (the time when all of a 

unit's cargo and passengers have been delivered) may be computed. Return routings and 
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airfield saturation levels are also given in the LP solution, as well as the marginal values of 

resource's 

in addition to the four primary inputs, other data allow NRMO to model aerial re- 

fueling, geographic crew movement, and intra-theater airlift. If directed by the scenario 

input, NRMO can assign dual-role aircraft as either airlifters or aerial refueling tankers, and 

reassign them as the contingency warrants. The movement of crews can be modelled geo- 

graphically by balancing their flow through selected rest bases, and observing overall limits 

on their number. Finally, NRMO allows intra-theater activity by alternating selected aircraft 

between tactical and strategic roles, again as the contingency warrants. 

NRMO is a very complex example of a multi-commodity, elastic demand-staircase 

model. With some modifications and additional assumptions, it provides a good case study 

for cascades. This chapter develops the case study by presenting the model, and then states 

the proximal and Lagrangian cascade formulations. The monolith formulation of NRMO 

follows [Rosenthal et cd. 1997]. 

B.        NRMO FORMULATION 

1. Explanation of Terms and Acronyms 

The following is a list of terms and acronyms used by the NRMO formulation. As 

necessary, these terms are explained in greater detail throughout the formulation. 

acft aircraft 
APOD Aerial Port of Debarkation 
APOE Aerial Port of Embarkation 
AR Aerial Refueling 
backchannel   returning an empty aircraft from an APOD to an APOE 
bed down       resting location of tanker or intra-theater aircraft 
cargo types:    bulk - palletized 

oversize - typically vehicles 
outsize - typically tanks or helicopters 
pax - passengers 

chop assignment of aircraft to an intra-theater role 
CONUS Continental United States 
CRAF Civil Reserve Air Fleet, airliners contracted for military service 
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crew stage location where aircraft get a fresh aircrew 
divert routing of an intended AR mission that failed 
FOB Forward Operating Base 
line id delivery requirement 
MOG Maximum On Ground, an airfield's capacity 
quick turn unloading an aircraft in theater without servicing 
recovery eventual servicing location of a quick turn mission 
RON Remain Over Night 
ston short ton (2000 lbs.), as opposed to metric ton (1000 kg.) 
shuttle intra-theater mission 
super node an aggregation of APODS to reduce the number of variables 
tanker cloud modeling construct to reduce the number of variables 
theater region of the world where the deliveries occur 
ute utilization 

T 
TWi 
Tu 

FT 

U 

I 
Ifob 

■i-apd 

h,dst 

J-b,tm 

J-b,sup 

c 
cc 
ca 

A 
Ac 

■"■mix 

■t^pax 

Atkr 
Arfl 

■A-chp 

Sets 

time periods 
delivery time window for line id i 
a set of time periods over which an aircraft's flying hours are limited 
flow time periods / = {1,..., maximum mission time }, used for flight times 

the set of time blocks that limit an aircraft's flying hours 

line ids 
subset of line ids whose destination is a FOB 
subset of line ids whose destination is an APOD. 
subset of line ids that have base b (FOB or APOD) as a destination 
subset of line ids that have APOD b as a transshipment node 
subset of line ids that use super node b 

cargo types {bulk, over, out, pax} 
cargo types {bulk, over, out} 
subset of cargo types that can be carried by acft a 

set of acft types 
subset of acft types that can carry cargo type c 
subset of acft types that can carry pax and at least one other 
cargo type (bulk, over, or out) 
subset of acft that can carry passengers 
subset of tanker acft types 
subset of acft that can be refueled by a tanker 
subset of acft that can be "chopped", i.e., assigned to the theater 
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B set of all "bases" (APOE, APOD, FOB, super, enroute, waypoint, 
bed down, and aerial refueling points) 

Bsup subset of bases that are super nodes 
Bfob subset of bases that are FOBs 
Be subset of bases that are embarkation nodes 
Barp subset of bases that are AR points 
Btkr subset of bases that are bed-down bases for tankers 
BSrec set of super nodes that have at least one recovery base 
Bway set of bases that are enroute navigational waypoints 
BSb dwn set of super nodes that have b as the shuttle bed-down node 
BFb\sup set of FOB'S that call b their super node plus the super node itself 
BA^tkr subset of Barp that are served by b € Btkr 

BTb[arp subset of Btkr that serve b e Barp 

BcrW crew stage bases 
R routes 
RD delivery routes 
RB backchannel routes 
RBrec subset of backchannel routes that include a recovery base 
RDb delivery routes that use base b (terminal node is a super, not FOB or APOD) 
RDia,<Hr subset of routes that can be flown by a and carry i for direct delivery 
RDia,tm subset of routes that can be flown by a and carry i for transshipment 
RBab subset of backchannel routes that use b and can be flown by a 
RDb,div set of delivery routes that have 6 as a divert base 
RBb,div set of backchannel routes that have 6 as a divert base 
i?6i0ri routes whose origin is base b 
Rb,dst routes whose destination is base b 

3.        Data 

Mission time data 
rtrvar total travel time for acft a to travel on route r (periods) 
trvar rounded rtrvar (integer periods) 
retrvatrr travel time for acft a to reach base b when flying route r (periods) 
etrvabr rounded retrvahr (integer periods) 
maxtrva maximum total travel time along any route for acft a (integer periods) 
msntimearf   time flown / periods into a mission (hrs) 

• hrsper if rtrvar > f (mission continues throughout /th period) 
• 0 if rtrvaT < f - 1 (mission teminates before /th period) 
• hrsper ■ (rtrvaT - (/ - 1)) if / - 1 < rtrvar < f 
(mission terminates during /'th period) 
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ttrvab rounded rttrvabr (integer periods) 
tkrtimeabb'      in-flight time for tanker a flying from b to b' and back (hrs) 
tkrrateabv       maximum number of tanker shuttles to AR point b' per period 

for tanker a when it is bedded at b 
shutrateai      maximum number of in-theater shuttles per aircraft per period 
sgtimeab ground time for shuttle aircraft o at base b (hrs) 
gtrvi in-theater ground travel time for i (periods) 
shuttimeia      in-flight shuttle time (hrs) 
flttimearf       same as msntimearf, but only includes flying time 

thus, flttimearf < msntimearf, since all missions 
have some ground time 

gtimeabr ground time for aircraft a at base b when flying route r (hrs) 
qtimeabr offload time only for acft a at base b when flying route r 

with recovery used (hrs) 
ctrvabr travel time to b, plus crew rest, for a along r (integer periods) 
cttrvab ttrvab plus crew rest (integer periods) 
dhtrvvb traveltime for deadheading crew from b' to b (integer periods) 
rttrvab tanker a reposition time (approx 2 days) from embarkation 

or bed-down base b to cloud (integer periods) 
Aircraft data 
newacat number of new acft of type a available in period t 
CUmaCat = J2t'<t newacat' 
crewrata ratio of available crews to acft a 
purecapiac      number of stons of unit i's cargo of type c that can be loaded on acft a 

for a 3200nm flight 
maxpaxa        maximum number of pax that can be loaded on an acft of type a 
paxfraca fraction of an acft's capacity that can be loaded with pax 
rangefaciar     fraction of acft available for loading when flying route r for line id i 
restrewa unit reward for resting acft a at base b e Be 

(maxiclpurecapiac} ■ lateperii ■ 0.01) 
usepena usage penalty for theater aircraft and tanker reassignments 
dhpena penalty for deadheading crews 
tkreqvsabr       amount of a full tanker consumed by acft a refueling at AR b 

onr(KClOequiv) 
tkrpropabv      proportion of a full tanker (KC10 equiv) available when a is a refueler 

at AR base b' and is bedded at b 
dpcba fraction of AR attempts by receiving acft a that fail 
uratea number of hours per day that aircraft a can fly 
initchopat,       initial acft chopped to theater 
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Movement requirements data 
rddi required delivery date 
derriic stons of demand for line id i of type c 
lateperii late penalty (delivered after rddi) for * per day per ston 
maxlatei maximum number of time periods late a delivery for line id i can arrive 
nogoperii non-delivery penalty per ston (> lateperii ■ maxlatei) 
Other data and notational conventions 
hrsper number of hours per period 
acpkgab unit mog consumption of aircraft a at base b 
mogeffb mog efficiency at b 
mogb airfield capacity: service spot hours per period at b 
I (•) 1 if argument is true; 0 otherwise. 
(x)+ = max{0, x} 
S complement of a set S _ 
\ set difference, i.e., S\T = SnT 

In general, constraints and variables are assumed to exist 
only for the appropriate combinations of their indices 

4. Decision Variables 

Aircraft mission variables 
XDiart 

■"■ J- iart 

XDRiart 
X. 1 tliart 

XSiat 
Yart 
TKRAabb>t 
Aircraft inventory variables 

# of aircraft a direct delivering i on route r departing at time t 
# of aircraft a delivering a transshipment load (from APOE to a 
transshipment APOD) of i on route r departing at time t 
# of aircraft a direct delivering i on quick turn route r departing at time t 
# of aircraft a delivering a transshipment load of i on quick turn route r 
departing at time t. The load is shuttled after transshippment, 
# of (round trip) shuttle missions of type acft a delivering i in t 
# of aircraft a recovering on route r departing at t 
# of tanker sorties of type a flown from b €. Btkr to b' € Barp in t 

RONabt 
RONTabt 

RONRabt 
IRONTab 

IRONRab 

THCHOPabt 
THCHOPRau 
TKRBabt 

number (#) of acft of type a Remaining Over Night at b € Be in t 
# of acft of type a "RONing" without recovery in t 
# of acft of type a "RONing" with recovery in t 
# of acft of type a initially assigned to b (non-recovery) 
# of acft of type a initially assigned to b (recovery) 
# of acft assigned to super 6's shuttle fleet from non-recovery routes in t 
# of acft assigned to super 6's shuttle fleet from recovery routes in t 
# of tankers a whose bed-down base is b € Btfcr in t 
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Aircraft changing roles 
ALLOCabt 
TKRECabt 
TKRCEabt 

TKRBC, abt 

TKRCBajbt 

Cargo 
DTONSiaCt 

TTONSiact 

STONSiact 
GTONSict 

NOGOic 

Crews 
SCREWSabt 

# of new acft a allocated to b G Be in t 
# of tankers a leaving b G Be in t for service as a refueler (for cloud) 
# of tankers a leaving tanker fleet (cloud) in t 
for b e Be for cargo hauling 
# of tankers a leaving b G Btkr in t 
for reassignment or service as a cargo hauler 
# of tankers a being reassigned (from cloud) in t to 
b G Btkr for refueling 

stons of i's cargo of type c direct delivered by a that will arrive in t. 

stons of Vs cargo of type c for transshipment by a arriving at (the 
transshipment node) in t 
stons of i's cargo of type c shuttled by a in t 
stons of i's cargo of type c ground that will arrive at the FOB in t 
Note: when indexed by "pax," DTONS, TTONS, STONS, 
and GTONS represents number, not stons, of pax. 
stons of i's cargo of type c not delivered 

# of strategic airlift crews available (rested) for a at b G B 
at the beginning of time t 

DHCREWSavu   # of deadheading crews for a leaving b' at time t 
for reassignment to b 

crw 
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5. Formulation 

OBJ: Objective function 

minimize 

5Z 5Z 5Z 2 *atePeni • (* - rdd*)+ ■DT0NS^ 

+ Y, J2 H X^/atepeni •(£"rddi)+'ST0NSiact 

+ Y, Y, S Zatepeni'(t"rddi)+'GT0NSict 
i€lfob c£C teTWi 

+ Y^ 5Z no9°Peni' NOGOic 

+   51    S  YUSepena^THCH0Pabt + THCH0PRaht^ 

+ J2  Y,Yuseperia'TKRECait+  Y    S ^useperia-TKRBCau 
aZAtkr b&Be t&T aSAtfcr 6€Btfcr *GT 

-^^^restreii;a-ÄOJVflW + ^    ^    J2dhPeTla-DHCREWaWt 

a£A beBe teT a$A b,b'€Bcrw t£T 

Minimize the sum of: 1) late penalty • number of days late • late cargo delivered di- 

rectly to the line id's destination; 2) late penalty • number of days late • late cargo shuttled 

(from the transshipment base) to the line id's destination; 3) late penalty • number of days 

late • late cargo delivered by ground from the transshipment base; 4) nondelivery penalty • 

undelivered cargo; 5) usage penalty • number of chopped aircraft or reassigned tankers; 6) 

a small reward (negative penalty) • number of aircraft remaining overnight at an APOE (of- 

ten CONUS, and thereby near home station); and 7) crew deadhead penalty • deadheading 

crews. 
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ACBALE: aircraft balance at embarkation nodes 

E    E    xr^+E    E    XD^ 
ielfcb r€RDbnRDia,trn i£l r€RDbnRDiaidir 

J2 E XT^rt + J^ E XDRiart 
ielfot, reRDbnRDiaitrn »GJ r<£RDbnRDiatdir 

+I(a e Atkr) ■ [TKRECabt] + RONaU = RONabt-1 +    E    Y°»*-trVar 
T£RBab 

+ALLOCabt +1 (a e Atkr) • [TufACE«**] Va e A, 6 € £e, * € T 

AirCraft BALance at apoE's: For each aircraft type, APOE, and time period (day); 

departing transshipment missions + departing direct delivery missions + assignments to 

tanker duty (if aircraft is a tanker) + overnight resting aircraft = resting aircraft from yester- 

day + arriving backchannel missions + newly assigned aircraft + reassignments from tanker 

duty (if aircraft is a tanker). Note that direct delivery missions and transshipment missions 

can be selected to recover away from the APOD (XDR, XTR) or recover at the APOD 

(XD, XT) missions. This is true throughout the formulation, except as noted. 

ACBALSUP: aircraft balance at SUPER debarkation nodes 

J2      YaH + RONTabt + THCHOPabt = 
r£RBabnRBrec 

/ / v XTiart-trVar + /  y / v -%■ ^iart-trvaT 

ielfob r€RDbnRDia,trn *€/ reRDbnRDia,dir 

+RONTabt-i + THCHOPabt-i + I(t = 1) • IRONTab        Va € A,b e Bsup,t G T 

AirCraft BALance at SUPer's: A "super" node is a surrogate for all bases in the 

theater. Flow balance is done with supers, but MOG is constrained at the actual theater 

APODs and FOBs. Additionally, this constraint only addresses missions that recover at the 

APOD. Other missions are constrained in ACBALREC. For each aircraft type, super, and 

time period, the departing backchannel missions + overnight resting aircraft + total aircraft 

chopped to the theater = arriving transshipment missions + arriving direct delivery missions 
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(for those line ids whose destination is an APOD) + last night's resting aircraft + yesterday's 

total of chopped aircraft + the initial "chops" to theater (if it is the first time period). 

ACBALREC: aircraft balance at SUPER debarkation nodes with recovery 

J2 Yart + RONRabt + THCHOPRabt = 
r£RBai,r\RBrec 

/ j / j XTRiart-trvar + 2_^ /_j XDRiart-trvar 

ielfob r&RDhC\RDia,tm *€/ r€RDbnRDiatdir 

+RONRabt-i + THCHOPRabt-i + I(t = 1) • IRONRab       Va e A,b € BSrec,t e T 

AirCraft BALance at supers using RECovery routes: Same as ACBALSUP, but 

balances flow for missions not recovering at the APOD. 

INITIRON: allocate initial theater assignments 

IRONTab + IRONRab = initchap^   Va G A^, b e Bsup 

INITIal RONs in theater: For period 1 and all aircraft and supers; the sum of RONS 

at APOD recoveries plus the RONS at non-APOD recoveries equals the initial aircraft 

chopped to theater. 

ACALLOC: allocate newly available aircraft 

y^ ALLOCabt = newacat   Va 6 A, t € T 
beB* 

AirCraft ALLOCation: For each aircraft type and time period; the sum of all new 

allocations to APOE's = the amount newly available. 
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SHUTLBND: don't send more shuttles than available 

Y °m*     < [THCHOPabt + THCHOPRabt]   Va e A,b € Bsup,t ET 
. T *-^ T   shutrateai 

SHUTtLe BouND: For each aircraft type, "super" APOD, and time period; the num- 

ber of round trip shuttle missions divided by the daily number of round trip missions per 

aircraft < the total chopped aircraft in the theater. 

TKRBND: don't use more tankers than available 

y    TKRAaWt ^ TKRBabt   yaeAtkr)beBtkT,t€T 
v&U, tkrrate<*»' 

TanKeR BouND: For all tankers, tanker bed down bases, and time periods: the 

number of AR sorties flown to all tracks divided by the daily sortie rate < tankers assigned 

to the bed down base. 

CLOUDBAL: flow balance: leaving and entering tanker fleet 

/ J TKRECabt-ttrvab +    2^,   TKRBCabt-ttrVab = 
b£Be b£Btkr 

J2 TKRCEabt + J2 TKRCBabt Va e Atkr, t e T 
b€Be b€BtkT 

tanker CLOUD BALance: The "tanker cloud" is a node at which, as a modeling 

convenience, we assume role changes take place for multi-role aircraft that can be tankers 

or airlifters. The "cloud" serves as a control point that reduces the number of required 

assignment and de-assignment variables. For all tanker aircraft types and time periods: 

newly assigned tankers from all APOEs (adjusted for travel time) + newly de-assigned 

tankers from all tanker bed down bases (also adjusted for travel time) = tankers returning to 

all APOEs + tankers deploying to all bed down bases. Note that de-assigning a tanker from 
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a bed down base does not force it back to an APOE; it could be re-assigned to another bed 

down base. 

TKRINVT: tanker inventory at tanker bed-downs 

TKRBCabt + TKRBau = TKRCBabt + TKRBabt-i   Va G Atkr, b G Bthr, t G T 

TanKeR IN\fenTory: For all tanker aircraft types, tanker bed down bases, and time 

periods; newly de-assigned tankers + total tankers assigned = newly assigned tankers + total 

tankers assigned from last period. 

ARMOG: aerial refueling capacity constraint 

^   y~^ >J tkreqVSabr • XDiaTt-etrvabr 

i€l a&Arfi r€.RDbC\RDia,diT 

+ Y~^   V^ V^ tkreqVSabr • XTiaTt-etTVabT 

iel a£Arfl r€RDbnRDia,trn 

y^   y^ y~^ tkreqVSabr • XDRiart-etrVair 

iel a&Arfi r€RDbnRDia,diT 

+ y~^   y~^ y^ tkreqVSabr ■ XTRiart-etrvabr 

i£l aeArfl r€RDbnRDia,trn 

+   ^2     Y2    tkreqVSabr • Yart-etrvabr 

a&Arfi reRBab 

<     V"      y^ tkrpropavb ■ TKRAavu V6 G Barp, t G T 

6'GBT6,orp a&AtkT 

Air Refueling MOG: Despite the apparent contradiction of terms, this constraint is 

the air refueling analog to airfield MOG — it constrains the capacity of an AR track. For 

all air refueling points and time periods; the fuel required by direct delivery, transshipment, 

and backchannel missions hitting the track in this time period < the amount of fuel available 

from tanker sorties flown to the track. 
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UTE: utilization rate 

/J 22     ^2      /2 ftttimearf ■ XDiart-(f-i) 
teTu iel r€RDiatdir feFT 

+ 22  Z_/        A2 Z2  f^ttirneo.Tf ■ XTiart-(f-l) 
teTu i€lfob r€RDia,trn feFT 

+ Y2Y2       5Z        Y2  fltUmearf • XDRiart-(f-l) 
teTu iel reRDia,dir feFT 

+ ^2 Y2        HL,        5Z  flttime*rf • XTRiart-U-X) 
teTu ielfob rSÄAo.trn feFT 

+ ^2  X> shuttimeia • XSiat +Z2A2    ^2  flttimearf ' ^ort-(/-l) 
ielfob teTu teTu reRBb feFT 

+I(a e Atkr) ^2    y2   ^2 tkrtimeabv ■ TKRAabb>t 
beBtkrb'eBarpteTu 

+ ^2Y2 hrSPer ' rttrvab ■ TKRECabt 
beBe teTu 

+ ^2  Y~] hrsPer ■ 7"tirvdb ■ TKRBCau 
beBtkr teTu 

< ^2 cumacat ■ uratea Va£ A,u€U 
teTu 

UTilization ratE: Sums all varieties of flight time, so the left-hand-side parameters 

of this constraint accumulates flight time only of missions operating during blocks of UTE 

rate enforcement. The utilization rate blocks B in NRMO are defined arbitrarily. They are 

motivated by the fact that over a period of several weeks, an aircraft can historically fly an 

ill defined average amount of time. Thus, UTE rate blocks are generally between 20 and 

30 days. 

For each aircraft type and UTE rate block; the flight time of all direct, transshipment, 

shuttle, and backchannel missions (as well as deployed and deploying tankers, if appropri- 

ate) < total aircraft hours available • maximum hours per day of average aircraft utilization. 

The / index corresponds to the number of days into a mission, so when / = 1, a typical 

term is the flight time of a mission's first day times the number of missions (ofthat type) 
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launched that day. Similarly, when / = 2, a typical term corresponds to the flight time of a 

mission's second day times the number of missions (ofthat type) launched on the previous 

day. 

ACCONSUME: max acft usage to lessen rounding effects 

y^     y^      yj msntimearf ■ XDiart-{f-i) 
iGJ r€RDia,dir f£FT 

+ V^     y~^      yj msntimearf ■ XTiart-(f-i) 
ielf0b reRDia,trn f£FT 

V^    V^      yj msntimeaTf ■ XDRiart-(f-i) 
i€l rSRDia.dir feFT 

+ y^     y~^      y~" msntimeaTf ■ XTRiart-(f-i) 
ielfoi r€HDi0,trn /GFT 

+ V^      rsPer    . x£.at + V"  V" msntimearf ■ Yart-(f-i) 
^shutrateai T^B fl^T 

+I(a e Atkr) 
bGBtkr b'£Barp 

+ y~^ rttrvab ■ hrsper ■ TKRECabt 
b£Be 

+ y~^ rttrvab ■ hrsper • TKRBCabt 
b&Btkr 

+ Y,hrsper-RONabt+  ^ hrsper • [RONTM + RONRM] 

beBe beBsup 

< hrsper ■ cumacat va €. A,t £ 1 

AirCraft CONSUMEd: Structurally similar to UTE, this constraint reduces the ef- 

fect of time discretization. It supplements the flow balance constraints, which may deal 

with short missions whose rounded duration is 0 periods. For all aircraft types and time pe- 

riods; mission time of all direct, transshipment, shuttle, and backchannel missions (as well 

as deployed and deploying tankers, if appropriate) plus resting aircraft < total aircraft hours 

available. 
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DCAPACITY: aircraft capacity for direct delivery 

^    DTONSiact  , paxfracg ■ DTONSi,aaiax,t    Tl   c A    , 
y 1 • l{a (z si-pax) 

^TT^nn purecapiac maxpaxa 

<     ^2    rangefaciar ■ [XDiart-trvar + XDRiart-trvar}    Vi E I, a € A, t E ± ,, t TWi 
,      w   ^yy  ~j «wjy., ^-   —   —    LLLI    L LIVaT ' tL*'    *■ *"    ^OX J — f — , 

Direct delivery mission CAPACITY: For each line id, aircraft type, and time period; 

the number of tons delivered (summed over cargo classes) divided by the aircraft capacity 

by cargo type and unit + the passengers delivered divided by the passenger capacity < the 

number of missions launched in support of i by aircraft of type a along any route, launched 

long enough ago so as to be arriving at time t. paxfrac specifies the portion of the aircraft 

filled if fully loaded with passengers. Parameter rangefac is frequently 1, but is reduced if 

a leg of route r is long enough to exceed the aircraft's range-pay load performance. 

TCAPACITY: aircraft capacity for transshipments 

y^    TTONSjact  | paxfracg ■ TTONSiA,paXtt   J(Q C A    . 

^£~^nn purecapiac maxpaxa pax 

<     ]T     rangefaciar ■ [XTiart-trvar + XTRiart-trvar}    Vi € Ifob,a E A,t eTWi 

r£RDia,trn 

Transshipment mission CAPACITY: Same as DCAPACITY but applies to missions 

flown in support of cargo and pax deliveries to transshipment APODs (for subsequent trans- 

shipment). 

SCAPACITY: aircraft capacity for shuttle deliveries 

ESTONSiact paxfraca ■ STONS^a,Pax,t r, _ A s 
 1 • 1 {0, fc Si-pax) 
purecapiac                   maxpaxa 

< srangeia ■ XSiat Vz E Ifob,a E A,t E TWi 
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Shuttle mission CAPACITY: Same as DCAPACITY and SCAPACITY, but applies 

to intra-theater missions moving cargo from transshipment APODs to FOBs. 

DPAXCAP: aircraft capacity for direct delivery of pax 

DTONSi<a>pax,t < 

]T    maxpaxa ■ [XDiaTt-trVaT + XDRiart-trvar}   Vi € I, a € Amix, t € TWi 

Direct delivery mission PAX CAPacity: For each line id, aircraft type, and time 

period; the number of pax moved must not exceed the maximum pax per mission • number 

of missions flown. It supplements DCAPACITY, which would (by itself) allow the aircraft 

to be fully loaded with pax, despite available seating configurations. 

TPAXCAP: aircraft capacity for transshipment of pax 

TTONSi,a,Pax,t < 

J2    maxpaxa ■ [XTiaTt-trvar + XTRiart-trvar]   Vi € Ifob, a € A»«, t G TWi 

r£RDia,trn 

Transshipment mission PAX CAPacity: Same as DPAXCAP, but applies to trans- 

shipment missions. 

SPAXCAP: aircraft capacity for delivery of pax by shuttles 

STONSi,a,pax,t < maxpaxa ■ XSiat   Vi € I/o&, a £ Amix,t £ TWi 

Shuttle mission PAX CAPacity: Same as DPAXCAP and TPAXCAP, but applies to 

intra-theater shuttle missions. 
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MEETDEM: meet demand for each line id 

J2 J2 DTONSiact + NOGOic 
a£Ac t£TWi 

+I(i € Ifob) J2 Y, ST0NS™<* + Y,GT0NS«* 
.aeAc teTWi teTWi 

= derriic      Vi € I,c € C 

MEET DEMand: For each line id and cargo class; direct delivery tons (and pax) 

moved by all aircraft over the available time window + tons moved by shuttle missions (if 

destination is a FOB) + tons moved by ground (if destination is a FOB) + cargo NOT moved 

= demand by unit and cargo class. 

TRANSTONS: flow balance for transshipped stons 

J2 TTONSiact = Y, STONSiact 
a&Ac a£Ac 

+GTONSict+gtrvi ■ lit + gtrv, G TWt)   Mi 6 Ifob,cGC.teTWi 

TRANSshipment TONS: For each line id, cargo class and time period; Transship- 

ment tons moved from APOE to transshipment APOD by strategic airlift = tons moved from 

transshipment APOD to FOB by shuttle or ground transport. 

INITCREWS: initialize crew placement 

Y^  SCREWSabt + crewrata-  ^ TKRBabt 

beBcrw b£Btkr 

= crewrata • newacat *a, t = 1 

INITialize CREWS: For all aircraft and time period 1; strategic airlift crews avail- 

able at all crew stage bases + crew contingent for all pre-deployed tankers = number of 

crews available. 
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SCREWBAL: strategic crew balance of flow 

SCREWSabt+i = SCREW Sabt 

+ 2_j /_j [X Diart-ctrvabr + XDRiart-ctTVabr\ 

iel  r€RDiatdir^Rb,ori 

+   / / [XT.iart-ctrvabr + X 1 Kiart-ctrvabr\ 

iZlfob r€RDia,trn.nRb,ori 

+   E   y—— 
r<=RBnRbiOTi 

— / / [X DiaTt-etrvabr + XDRiart-etrvabr\ 
i€l reRDiaidirriRbidst 

— / / [XTiart-etrvabr + XTRiart-etrvabr\ 

i£lfob r€RDia,trn<~\Rb,dst 

~~ / _, Yart—etrvabr 

r€RBnRb,dst 

+I(b € Be) ■ crewrata • [TKRCEau-cttrvab - TKRECabt] 

+I(b e Bsup)- 

crewrata ■ [THCHOPabt-i - TECEOP^t + /(* = 1) • IRONTa,b] 

+7(6 € BSrec)- 

crewrata ■ [TECEOPRabt-i - TECEOPRabt + I(t = 1) • IRONRa,b] 

+I(b e Be,t^ l,newacat > 0) • crewrata ■ ALLOCabt 

+   J2   DECREW^bt-dhtrvvb-   J2  DHCREWawt 
VZBcrw b'€Bcrw 

\Ja,beBa.w,  Vt:(teT,t<\T\) 

Strategic CREW BALance: For all aircraft, crew stage bases, and time periods; the 

number of crews available tomorrow = the number of crews available today + crews coming 

out of crew rest from previous direct, transshipment, and backchannel missions - crews 

required for departing direct, transshipment, and backchannel missions + the net crews made 

available from tanker deployments and returns (if APOE and tanker aircraft) + the net crews 

made available from "chopped" and "unchopped" aircraft (if "super" APOD) + new crew 

allocations + arriving deadhead crews from other bases - deadhead crews departing for other 

bases. 
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MOG: airfield capacity 

^ ^ y~] gtimeabr ■ acpkgab ■ [XDiart-etrvabr + XDRiart-etrvabr] 

i€l a€A r€RDbnRDia,dir 

+■ S2  yZ     z2    gtimeabr • acpkgab • XDiart-trvar 
i€h,dst G€J4 reRDia,dir 

+   y^   ^2       X/       Qtlmeabr • acpkgab ■ X D Riart-trvar 

i€h,dst oG-A r£RDiaidir 

+ y^ y~^ >J gtimeabr • acpkgab • [XTiart-etrvabr + XTRiart-etrvabr 

i£l a€A reRDbnRDia,trn 

+    y~^    y^       22       gtimeabr • acpkgab ■ XTiart-trvar 

i€h,tTTi a€A r€RDia,trn 

+  y^  T^     V^     qtlmeabr • acpkgab ■ XTRiart-trvar 

+ y^ ^2 sgtimeab ■ acpkgab ■ XSiat 

i€(Ib,dstMfob)Ulb,trn a^A 

+        J2        J2 hrsper' acPk9ab • [THCHOPavt + THCHOPRavt] 

+ ^    ^2    9^meabr ■ acpkgab ' Yart-etrvabT 
a£A r£RBab 

+I(b e BtkT) y^ hrsper ■ acpkgab • TKRBau 

+ S~\   y^ y^ dpCta ■ gtimeabr • acpkgab ■ XDiart-etrvabr 

iel a€Arfl r£RDbidiv<~\RDiaidir 

+ y^ y^ y^ dpcta ■ gtimeabr • acpkgab • XDRiart-etrvabr 

i£l  a&Arfl reRDbtdiv<^RDia,dir 

+ y^ y^ y^ dpcta • gtimeabr • acpkgab ■ XTiart-etrvabr 

iel  aZArfl T&RDb^divnRDia,tTn 

+ y^ y~^ y~^ dpcta • gtimeabr • acpkgab ■ XTRiart-etrvabr 

i£l  a€Arfl r€RDbidiv^RDia,trn. 

+   y^        y^      dpda • gtimeabr ■ acpkgab ■ Yart-etrvabr 

a£Arfi r£RBbidiv 

< mogb ■ mogeffb V6 € B\ Bsup \ Barp\ Bway, t ET 
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Maximum On Ground: For all bases (except super APODs, AR points, and way- 

points) and time periods; the aircraft parking required for transiting and terminating direct 

delivery missions + parking for transiting and terminating transshipment missions + shuttle 

mission parking (if FOB or transshipment APOD) + chopped aircraft bed down parking (if 

shuttle bed down base) + backchannel mission parking - parking saved at offload base by 

using recovery backchannel routes (no fuel or maintenance at offload) + tanker bed down 

parking (if tanker bed down base) + divert base parking for failed refuelings of direct de- 

livery, transshipment, and backchannel missions < available MOG • MOG efficiency. 

Non-negativity of all variables. 

C.        NRMO BY PROXIMAL CASCADE 

Much of the NRMO formulation is well suited to a proximal cascade. Depending on 

the scenario and which features of the airlift system are modelled, the maximum staircase 

overlap m varies between one and three periods. Travel times for the various missions 

(accounted for by subtracting the appropriate number of periods from the corresponding 

variables' subscripts) determine the overlap. If all features are modelled, the maximum crew 

travel time lag in the SCREWB AL constraint, max^ [ctnw] +1, usually determines the 

maximum staircase overlap. If crews are not modeled, either the maximum mission travel 

time, maxar [trvar], or the maximum tanker reposition time max [ttrvaT] specifies m. The 

elastic demand constraint delivery windows are typically between 1 and 10 days. 

Because of the cascade convention stipulating that no column's time index exceed 

an associated row's time index, we re-define the GTONSict variable. For the cascade 

formulation, GTONSict is the amount of i's cargo of type c transshipped on day t, but 

only when t + gtrv{ € TW{. Since GTONSict appears only in the objective function, 

the MEETDEM constraint, and the TRANSTONS constraint (and is effectively con- 

strained only by the latter), the change has minimal impact on the formulation. This adjust- 

ment also has the advantage of reducing the number of staircase rows, since each 

TRANSTONS constraint includes columns from only one time period. 
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In addition to the notation defined previously, let fix(ROWn) represent all terms 

in equation ROW that were fixed prior to subproblem n. Stated another way, fix(ROWn) 

is the sum of all associated fixed columns, i.e., those that are indexed by t € \Jn><nTFn'. 

For each n eNCn, the nth subproblem formulation follows 

OBJn: Objective function 

minimize 

J2Y1Y1      Y     latePeni ■ (* - Tddi)+ ■ DTONSiact 
izi a€A ceCa.terwinrc™ 

+  J2YY Y        latePeni ■ (* - rddi)+ ■ STONSiact 
i€lfob aeA ceCa t^TWiDTC" 

+ Y Y Y latePeni' (* + 9trvi ~ rddi)+ ■ GTONSia 
ieifob cec t€TCn 

+ Y2Y n°9°Peni ■ NOGOic ■ I (Ti n TCn ^ 0) 

+ Y    Y    Y usepena ■ [THCHOPau + THCHOPRabt] 
a£Achp beBsup t€TCn 

+ Y   Y  Y usepena-TKRECoJbt +  Y    Y   Y usepena-TKRBCabt 

a£Atkr b€Be t£TCn a&Atkr b€Btkr t&TCn 

~YY Y restrew* ■ RONabt + Y   Y     Y dhPena " DHCREWaWt 
a€A b£Be t€TC a€A b,b'eBCrw t€TCn 

+ ^2 Y no9°Peni" NOGO? ■ I (lastpn'~l < rddi + maxlatei < lastpnj 
i&I n'<n 

+fix(objn) 

This objective is similar to the monolith objective, with the following exceptions. 

Column indexed by time are active only if the time index is active. Since NOGOic is null 

indexed (not indexed by time), it is active only if a period of the line id's delivery window 

is active. The late penalty on GTONSict is adjusted for that variable's re-definition. 

The objective also includes two constants: 1) Y2i<=iY^n><nn09°Peni • NOGOic, 

the accumulated non-delivery penalties from line id's whose delivery window is now a sub- 

set of fixed periods; and 2) fix(objn), the accumulated penalties from previous subprob- 

lems' columns indexed by t. 
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ACBALEn: aircraft balance at embarkation nodes 

£   E   xTiart+Y:  E  XD™ 
ielfob r€RDbDRDia,trn *€' r<=RDbnRDiatdir 

£ £ XTRtart + Yl E Xö^-4 

i£lfob reRDbr\RDia,tm i^1 r€RDbnRDia,dir 

+I{a G Atkr) ■ [TKRECabt\ + RONabt 

= RONabt-X ■ I{t - 1 G TCn) +   E  Y*rt-trvar ■ I{t - trvar G TCn) 
r&RBab 

+ALLOCM + I(a G Atkr) ■ [TKRCEabt] + fix{ACBALEn
abt) 

\fa€A,beBe,teTCn 

The cascade modification adds a fixed term, and shows only active rows and columns: 

those indexed by an active period. 

ACBALSUP": aircraft balance at SUPER debarkation nodes 

Y^        Yart + RONTaM + THCHOPabt = 
r£RBabt~\RBrec 

J2 E XTi«rt-trvar ■ I{t ~ trvar G TCT) 
i£lfob r€.RDbnRDiaitm 

+ E E XDiart-tr^ ' /(* " *">„ € TCT) 
iel T€RDbnRDia,dir 

+(RONTabt^ + THCHOPabt-i) ■ J(t - 1 € TCn) 

+I(t = 1) • IRONTajt, + fix(ACBALSUP:bt) Vo G A, b G Bsup, t G TC"1 

The cascade modification adds a fixed term, and shows only active rows and columns: 

those indexed by an active period, and IRONTab for i = 1. 
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ACBALRECn: aircraft balance at SUPER debarkation nodes with recovery 

Y^       Yart + RONRatt + THCHOPRabt = 
reRBabnRBrec 

J2 Y, XTRiart-tr^-Ht-trVarGTC1) 
i£lfob r£RDbf)RDia,tm 

+ Y2 J2 XDRiart-trv^-Kt-trVareTCr) 
i&I r€RDbr\RDiaydiT 

+{RONRabt-1 + THCHOPRabt-i) • J(t - 1 € TC71) 

+I(t = 1) • IRONRab + fix(ACBALREC^t) VaeA,be BSrec,t e TCn 

The cascade modification adds a fixed term, and shows only active rows and columns: 

those indexed by an active period, and IRONRab for t = 1. 

INITIRONn: allocate initial chops to recovery or not 

IRONTab + IRONRab = inüchopab   Va G Achp, b G Bsup, n = 1 

The cascade modification activates rows and columns of this constraint only in the 

first subproblem. 

ACALLOC71: allocate newly available aircraft 

J2 ALLOCau = newacat   Va G A, t G TCn 

&€Be 

The cascade modification shows rows and columns are active only if indexed by an 

active period. 

SHUTLBNDn: don't send more shuttles than available 

\^ XSiat     < [THCHOPabt + THCHOPRabt]   Va eA.be Bsup,t G TCn 

^—'      shutrateai 
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The cascade modification shows rows and columns are active only if indexed by an 

active period. 

TKRBND71: don't use more tankers than available 

V    TKRAaWt < TKRBakt   \/a£Atkr,b£Btkr,teTCn 

t-*1     tkrrateabbi 

The cascade modification shows rows and columns are active only if indexed by an 

active period. 

CLOUDBALn: flow balance: leaving and entering tanker fleet 

J2 TKRECabt-ttrvab • I{t - ttrvab e TCT) 
b€Be 

+  J2  TKRBCabt-ttrvJ ■ I(t - ttrVab € TCn) 
b&Btkr 

+fix(CLOUDBAL"t) = 

Y, TKRCEabt + Y, TKRCBatt Va e Atkr,t € TCn 

6eBe beBtkr 

The cascade modification adds a fixed term, and shows rows and columns are active 

only if indexed by an active period. 

TKRINVT": tanker inventory at tanker bed-downs 

TKRBCabt + TKRBabt = TKRCBabt+ 

TKRBatt-i -I(t-le TCn) + fix(TKRINVTn
abt)   Va e Atkr, b € Btkr, t e TCn 

The cascade modification adds a fixed term, and shows rows and columns are active 

only if indexed by an active period. 
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ARMOGn: aerial refueling capacity constraint 

^2 Y2 Yl        tkreqvsafr • XDiart-£trvabr ■ I{t - etrvabr € TCn) 

iel aeArfi reRDbr\RDia,dir 

+ J212 H        tkreqvsabT ■ XTiart-etrvabT ■ I(t - etrvabr € TCn) 
iZl aeArfl r€RDbnRDia,trn 

Y2Y2 Yl        tkreqvSai>r ■ XDRiart-etrvabr ■ I(t - etrvabr € TCn) 
iel aZArfi r£RDbr\RDia,dir 

+ J2Y, J2        tkreqvSabr • XT^art_et„obr • I(t - etrvabr € TCT) 
i€l aeArfl r€RDbnRDia,trn 

+   Y2      Y2    tkre(IVS<*r • Yart-etrvabr • I(t ~ etrVabr £ TC") 
aZArfl r£RBab 

+fix(ARMOG"t) 

<     ]T      H tkrpropavb ■ TKRAaVbt Vfc € Barp, t e TCn 

The cascade modification adds a fixed term, and shows rows and columns are active 

only if indexed by an active period. 
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UTEn: utilization rate 

E E       E        E  flttime«rf ■ XDiart-V-l) ■ / (*"(/ " 1)€ TC") 
t£Tu iel reRDia>dir f€FT 

+ E E     E     E flttime*rf ■ XTurt-u-i) ■ I (*-(/ - l)e TCn) 

+ E E       E E  flUime°rf ■ XDRiart-U-1) ' I (*"(/ " ^ TC») 
t£Tu «GJ reRDia,dir feFT 

+ E  E E E  /*tt*™W • XTRiart-U-D ■ I {t-(f - 1)<E TC^) 
teTu i€//ob reÄöia.trn /€FT 

+ E E shuttimeia ■ XSiat 
i€lfob t£Tu 

+ E   E    E  flttime°rf ■ Yart-V-1) ' / (*"(/ ~ ^ TC") 
t€Tu reRBb f£FT 

V^    2_]   Eltkrtimeabb' • TKRAaWi +I(a € i4tfcP) 

+ y^ y^ hrsper ■ rttrvab ■ TKRECa 

+ fix(UTE2u) 

■'abt 

fceße t€T„ 

+ y~^  V^ hrsper ■ rttrvab • TKRBCabt 
b£Btkr t€Tu 

<J2cumacat-uratea Va € A,   Vu : T« n TC1 ^ 0 
tSTu 

The cascade modification adds a fixed term, shows columns are active only if in- 

dexed by an active period, and show rows are active only if a time period in the ute rate 

block u is active. Although this constraint is much wider than the cascade overlap, fea- 

sibility is not jeopardized because of the constraint's sense. However, it may jeopardize 

proximal cascade quality if tight in the solution to the monolith. 
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ACCONSUMEn: max acft usage to lessen rounding effects 

^2       E        E msntimearf • XDiart-y-i) ■ I (t-(f - l)G TCn) 
i£l T^RDia<dir f&FT 

+ y     y]      y] msntimearf • XTiart-(f-i) ■ I (t—(f - 1)G TCn) 
i€lfob reRDia,trn f€FT 

E       E E  mSntime*rf ■ XDRiart-V-l) • J (*-(/ - l)€ TCn) 

+ E        E        E msntimearf ■ XTRiart-if-1) " / (M/ " 1)€ TC") 
i€//o6 r€ÄDio,trn /€FT 

y^    hrsper    _ ^ 
^—^ shutrateai 

+ ]P  ]jP msntimearf ■ Yart-{f-i) ■ I (*-(/ _ 1)G TCn) 
reHB /€FT 

hrsper 

tkrrateabb' E  E f^'™* 
b€Btkr b'€Barp 

+I(a G Atkr) 

+ ^ rttr^at • hrsper • TKRECabt 

b€Be 

+ y rttrvab ■ hrsper ■ TKRBCau 
bZBtkr 

+ y hrsper ■ RONM +  ]T hrsper • [RONTabt + RONRatt] 
beBe b€B3Up 

+fix{ACCONSUMEn
at) 

< hrsper ■ cumacat Va G J4,£ G TCn 

The cascade modification adds a fixed term, and shows rows and columns are active 

only if indexed by an active period. 
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DCAPACITY": aircraft capacity for direct delivery 

y.    DTONSjoct     paxfracg ■ DTONSj^^t .j,aeA    \ < 

cecncc Vurecapiac maxpaxa 
pax 

y^     rangefaciar ■ {XDiart-trVar + XDRiart-trvaT] • I{t - trvar G TCn) 

+fix{DCAPACITYn
iat) WieI,aeA,teTCnn TWi 

The cascade modification adds a fixed term, and shows rows and columns are active 

only if indexed by an active period. 

TCAPACITYn: aircraft capacity for transshipments 

y.    TTONSiaat     paxfraCg ■ TTONSj^pq^t . j,   € ^    N < 

czcncc Vureaxpiac maxpaxa 
pax 

y^     rangefaciar ■ [XTiart-trvar + XTRiart-trvaT} • I(t - trvar G TCn) 

+fix(TCAPACITYlt) Vi G I/o6, a G A, t G TCn n TWt 

The cascade modification adds a fixed term, and shows rows and columns are active 

only if indexed by an active period. 

SCAPACITYn: aircraft capacity for shuttle deliveries 

Y^    STONSjgct     paxfracg ■ STONSi^pax,t   jiaC^    \ 

ceciicc PurecaP™c maxpaxa pai 

< srangeia ■ XSiat i G Ifob,a€A,teTCnnTW{ 

The cascade modification shows rows and columns are active only if indexed by an 

active period. 
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DPAXCAPn: aircraft capacity for direct delivery of pax 

DTONSi,aj)ax,t < 

y~]    maxpaxa ■ [XDiart-trVar + XDRiart-trvar) ■ I(t - trvo.r € TCn) 

+fix(DPAXCAPn
iat) Vi G /, a G AmiX) t€TCnD TW{ 

The cascade modification adds a fixed term, and shows rows and columns are active 

only if indexed by an active period. 

TPAXCAPn: aircraft capacity for transshipment of pax 

TTONSi^^t < 

Y^     maxpaxa ■ [XTiart-trVar + XTIkaTt-trvJ ■ I(t - trvar G TCT) 
r£RDia,trn 

+fix(TPAXCAPn
iat) Vi G Ifob,a G Amix,teTCnnTW{ 

The cascade modification adds a fixed term, and shows rows and columns are active 

only if indexed by an active period. 

SPAXCAP71: aircraft capacity for delivery of pax by shuttles 

STONSi,ajax,t < maxpaxa ■ XSiat       Vi G Ifob, a G Amix, t G TCn n TW{ 

The cascade modification shows rows and columns are active only if indexed by an 

active period. 
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MEETDEMn: meet demand for each line id 

]T      ^     DTONSiact + NOGOic+fix{MEETDEM?c) 
a£Ac t€TCnnTWi 

+I(l E Ifob) = dem. J2      J2     STONSiact+ J2 GTONSict 
.a&Ac teTCnDTWi t€TCn 

VceC,    Vi:TWinTCn^0 

The cascade modification includes a term for fixed deliveries, shows columns are 

active only if indexed by an active period, and shows rows are active only if the delivery 

window includes an active period. Note also that GTONSict is defined only for t+gtrvi <E 

TWi. 

TRANSTONSra: flow balance for transshipped stons 

Y, TTONSiact = Y, STONSiact + GTONSict    Vz G Ifob, c € C, t € TW* n TCn 

a&Ac a€Ac 

Because of the time-index shift in the GTONSict re-definition, this constraint no 

longer links multiple time periods. Since GTONSict is restricted to t + gtrv{ e TWi, the 

only explicit cascade modifications show columns are active only if indexed by an active 

period, and rows are active only if a period of the line id's delivery window is active. 

INITCREWSn=1: initialize crew placement 

Y  SCREW Saht+ crewrata-  ^ TKRBM 

beBcrw b£BtkT 

— crewrata ■ newacat ^ai * = 1 

The cascade modification shows rows and columns are only active for the first time 

period. 
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SCREWBAL": strategic crew balance of flow 

SCREWS^+i = SCREWSM ■ I(t G TCn) 

+ E E [XDtort-ctrva* + XDRiart-ctrvaJ ' /(* " <*™<*r G TCT) 

+ E E [XDiart-ctrv^ + XDRiart-ctrv.J " J(* " CtrVabr G TC") 

itlfob T£RDia,trn^Rb,OTi 

+        Yl        Yart-ctrvabr ■ I{t ~ Ctrvabr G TCT) 

r&RBnRbjOTi 

" E E [XDiart-etrvabr + XDRiart-etrv^] ' /(* ~ <*™abr G TC") 

i€/ r€RDia,dirnRb,dst 

~ E E [XTiart-etrvabr + XT Riart.etrVabr] ■ I(t - etnw G TC") 
»€//<,{, r^RDia,tm<^Rb,dst 

^2      Yart-etTvabr ■ I(t - etrvobr € TCn) 
reÄßnÄj,,dst 

+I(b € ße, t - cttrvahe TCn) ■ crewrata ■ TKRCEabt-cttrvab 

-I(b EBe,te TCn) ■ crewrata-TKRECabt 

+I{b G Bsup, t - 1 € TCT) ■ crewraU ■ THCHOP^ 

-I(b G Bsup,t G TCn)-crewrata ■ THCHOP^t + /(I € TCn) ■ IRONTa,b 

+I(b G BSTec,t- 1 G TC") • cre«;rata • THCHOPR^ 

-I(b G BSrec,t G rCre) • crewrata ■ THCHOPRabt + 1(1 G TCn) ■ IRONRa,b 

+I(b £Be,t^ 1,newacat > 0,t G TC1) • crewrata • ALLOCM 

+   53   DHCREWavbt-dktrvb,b-I{t-dhtrvb,beTCn) 

-   J2   DHCREWawt-I(tzTCn)+fix{SCREWBALn
abt+1) 

b'€Bc 

\faeA,be Bern, W : 0 G T,t + 1 G TCn) 

In order to satisfy the cascade requirement that no column have a time index greater 

than an associated row's time index, we define this constraint on t + 1. The cascade modi- 

fication also adds a fixed term, and shows only active rows and columns: those indexed by 

an active period, and IRONTab and IRONRab for t = 1. 
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MOGn: airfield capacity 

S~^ S~^ V^ gtimeabr ■ acpkgal> ■ [XDiart-etrvabr + XDRiart-etrvabT\ 

i€l a€A r€RDbr\RDia,dir 

■Iit-etrv^eTC") 
+ V"  V"    S2    gtimeabr ■ acpkgab ■ XDiaTt-tTVar • K* ~ trvar G TCn) 

i€h,dst a^A reRDiatdir 

+ J2 Y    Y    qtimeabr-acpkgab-XDRiart-trvar-n
t-trv^^TCn) 

iZh.dst °€A r€RDia,dir 

+ V^ V^ V^ gtimeabr • acpkgab ■ [XTiaTt-etrvabr + -XTitjart-etr^J 

ie/ a&A r£RDbr\RDia,trn 

■Ht-etrv^eTC") 
+  Y,  Y,     ^     gtimeabr • acpkgab • XTiart-trvar ' A* ~~ iru<"- € TCn) 

J€/fc trn OSA rSÄDio.trn 

+  £  J     ^     9timea6r-acpfcpa6-XrÄiart_tr,ar.-/(t-trt;arGrCra) 

+ Y^ y~^ sgtimeab • acpkgab • XSiat 
i£(h,dst<~tIfob)Uh,tm a€A 

+        Y        Yhrsper ' acpk9ab' lTHCH0P<*'t + THCHOPRavt] 
VzBsupnBS^dwn aeA 

+ ^2    Y    9Ume^ ' aCPk9ab ■ YaTt-etrvabr ■ I(t - etrVabr G TCn) 

a&A reRBab 

+I(b G Btkr) •     Y, hrsper ■ acpkgab • TKRBabt 
_a£Atkr 

+ Y   Y Yl dpda • gtimeabr ■ acpkgab ■ XDiart-etrvabr 

iel  a€Arfl r€.RDb,div^RDia,diT 

■I(t - etrvabr G TCn) 

+ \^   \^ V^ dpCta ■ gtimeabr ■ acpkgab ■ XDRiart-etrva.br 

i€l  aZArfl r€RDbtdiv<~*R£>ia,dir 

■I(t - etrvabr G TCn) 

+ y^   ^ ^ dpcta ■ gtimeabr ■ acpkgab ■ XTiart-etrvabr 

iel   aeArfl r€:RDb,div<~lRDia,trn 

■I(t - etrvabr G TCn) 

+ y^ y^ y^ dpcta ■ gtimeabr • acpkgab • XTRiart-etrvabr 

i£l   atzArfl r&RDbidiv^RDia,trn 

■I(t - etrvabr € TCn) 

+   ^2        Y      dpCta ' 9timeabr ' aCPk9ab ■ Yart-etrvabr ' /(* ~ etrVabr G TCT) 

a&Arfi r&RBbjdiv 

+fix(MOG£) 
< mogb ■ mogeffb Vb € B\ Bsup \ Barp\ Bway, t G TC 
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The cascade modification adds a fixed term, and shows rows and columns are active 

only if indexed by an active period. 

Non-negativity of all variables. 

D.        NRMO BY LAGRANGIAN CASCADE 

With the exception of the objective function, the Lagrangian cascade formulation of 

NRMO is straightforward. Rows indexed by t eTRLe are active in subproblem L Addi- 

tionally, rows indexed by t € TOe are active if all technological coefficients are positive, and 

the row has sense "<". Columns are active in subproblem £ if indexed by t eTRL eUTOe, 

the extended-active set. 

In addition to the notation used in Chapter II, define the following: 

aldi   Available to load date, the first period in TW{ 

RX   The set of rows that link two or more sets TRLe. 
This is the Lagrange-relaxed constraint set. 

Ti     Ute rate block defined as the active set, T* = TRLe 

Additionally, any variable in the formulation indexed by t eTOe (the extended set) 

is a duplicate variable; one that is unique to subproblem L 
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For each I eCL: 

OBJ€: Objective function 

minimize 

Y Y Y       Y      latePeni • (* ~ rdd*)+ ■ DTONSiact 
i€l aZAc&CaAZTWinTRLi 

+ Y Y Y      Y      latePeni ■ (* - rdd*)+ ■ STONSiact 
ieIfob a£A ceCa t£TWiPTRLe 

+  Y^  Y    Y    latePeUi ■ (* + 9trV* - rddi)+ ■ GT0NSict 
i£lf ob c£C teTRL* 

+ Y Y n°9°Peni ■ NOGOic ■ I (i: TWi C TRLe) 
i€l c€C 

+ Y    Y      Y    usepena-[THCHOPM + THCHOPRabt} 
aeAchp 6€J5sup teTnTRL* 

+ y~^  Y~"     y^    usepena • TKRECabt 
aZAtkr b€Be t€TnTRLe 

+ y^    y^      yj    usepena • TKRBCabt 
a€Atkr b€Btkr t£Tr\TRLe 

— y~^ y^     y^    restrewa ■ RON^t 
aeA b€Be t€TnTRLe 

+ Y    Y       Y    dhperia-DHCREWawt 
a€A 6,6'€BC™ teTnTRL* 

+£term 

The objective function is similar to the monolith's objective function, but columns 

are active only if indexed by an active period, t € TRL1. It includes the NOGOic columns 

for a line id only if i's delivery window is a subset of the active periods. The definition of 

GTONSict is identical to the one used in the proximal cascade formulation. 

The objective function also includes Herrn, which is the Lagrange penalty term for 

all active columns associated with Lagrange-relaxed rows. The coefficient on each of the 

Lagrange penalty terms in the objective is quite complex. Rather than list them entirely, 

we list the coefficient on the variable XTiart only. Dual multipliers ß corresponding to 
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Lagrange-relaxed rows are superscripted with the row's name: 

E E        E E  XT^f [E US*"* ■I {ACBALEM € RX) 

+ E #E3£TP •I (ACBALSUPabt e RX) 
oGBsup 

- E ßif+e?rlbr-tkreqvsabr-I(ARMOGM+etrVabr€RX) 
b^Barp 

~ E #Xf/-D • fltfonearf ■ I (t + (f - 1) € TRLe+1) 
f£FT 

~ E ß%H°-i)UME ■ msntimearf ■ I (ACCONSUME„r^u-D e RX) 
feFT 

+ß™+LA°ITY ■ rangefaciar • I (TCAPACITYiat+trVar € RX) 

+0S££?P ■ maxpaxa ■ I (TPAXCAPiat+trVar G RX) 

- E ßSSSHSit ■ I (SCREWBALabt+1+ctrVabr G RX) 

+ E 0EJKKS. •7 (SCÄ^ßill^iwn^ e RX) 
b^Bcrw 

E ßbt+£rvabr • 9timeabr ■ acpkgab ■ I (MOGbt+etrvabr € AX") 
6€ß\ßsup\-Barp\-ßti;ay 

E ßbSSv„ • 0**™W • acp%a6 • / (MOGbt+trvar € ÄX) 
6€ß\ßSUp\ßorp\'B«;ay 

- ^ ßbt+tZvar ' dPCta- ' 9timeabr ' acpkgab ■ I (MOGu+trvar £ AX") 

b€B\BSVLp\Barp\Buiay 

The Lagrangian cascade solution value is given by the sum of the subproblem objec- 

tive values, plus the sum of the Lagrange-relaxed row right-hand-sides multiplied by their 

associated penalties. 
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ACBALE^: aircraft balance at embarkation nodes 

E    E    xTiart+Y,    E    XDi^ 
i£lfob r€RDbnRDia,tr~n. i€l r€RDbnRDia,diT 

J2 E XTIUart + Y, E XDRiart 

i£lfob reRDbnRDia,trn »€/  T£RDbC\RDia,dir 

+I(a e Atkr) ■ [TKRECabt] + RONabt = RON^-i +   E  Y**-*™«- 
rZRBab 

+ALLOCabt + I(a £ AtkT) ■ [TKRCEM] Va € A, b € Be, t e TRL1 

The cascade modification activates rows and columns indexed by the active set, and 

duplicates columns indexed by the extended set. 

ACBALSUP*: aircraft balance at SUPER debarkation nodes 

Y^ Yart + RONTatt + THCHOPabt = 
r£RBabnRBrec 

>J 2__, XTiart-trVar   +  ^ /_^ XDiart-tTVar 

i<=Ifob r€RDbr\RDia,trn »€/ r€RDbnRDia,dir 

+RONTabt-i + THCHOPabt-i + I{t = 1) • IRONTab        Va€A,b£ Bsup,t G TRL' 

The cascade modification activates rows and columns indexed by the active set, 

and duplicates columns indexed by the extended set. IRONTab is only active in the first 

subproblem. 

ACBALREC*: aircraft balance at SUPER debarkation nodes with recovery 

Y Yon + RONRabt + THCHOPRabt = 
reRBabr\RBrec 

]T J2 XTRiart-trvar+Yl E XDR^t-trv„ 
i€lfob T&RDbr\RDiattr^ ie/ r&RDbr\RDia,dir 

+RONRabt.1 + THCHOPRabt-i + lit = 1) • IRONRab  Va e A,b € BSrec,t € TRLe 

The cascade modification activates rows and columns indexed by the active set, 
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and duplicates columns indexed by the extended set. I RON Rob is only active in the first 

subproblem. 

INITIRON£=1: allocate initial chops to recovery or not 

IRONTab + IRONRab = initchopab   Va e A^, b e Bsup 

The cascade modification activates these rows and columns only in the first sub- 

problem. 

ACALLOC£: allocate newly available aircraft 

Y^ ALLOCabt = newacat   VaeA,te TRLe 

b€Be 

The cascade modification activates rows and columns indexed by the active set. 

SHUTLBND*: don't send more shuttles than available 

yy XSiat     ^ [THCHOPabt + THCHOPRabt]   \/a€A,b£ Bsup,t e TRLe 
z—'      shutrateai 

The cascade modification activates rows and columns indexed by the active set. 

TKRBND^: don't use more tankers than available 

y    TK ****** < TKRBM   \/a€Atkr,beBtkr,teTRLe 

The cascade modification activates rows and columns indexed by the active set. 
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CLOUDBAI/: flow balance: leaving and entering tanker fleet 

J2 TKRECabt-ttrvab +    E   TKRBCabt-ttrvab = 
b€Be b£Btkr 

]T TKRCEabt + Y, TKRCBabt Va G Atkr, t G TRLe 

b&Be beBtkr 

The cascade modification activates rows and columns indexed by the active set, and 

duplicates columns indexed by the extended set. 

TKRINVT*: tanker inventory at tanker bed-downs 

TKRBCau + TKRBM = TKRCBabt + TKRB^t^   Va G Atkr, b G BtkT, t G TRL£ 

The cascade modification activates rows and columns indexed by the active set, and 

duplicates columns indexed by the extended set. 

ARMOG^: aerial refueling capacity constraint 

E E E        tkreqvaabr • X Diart.etrVabr ■ lit - etrv^ G TRL* U TO£) 
i&I a€Arfl r€RDbnRDia,dir 

+ E E E tkreqvsabr ■ XTiart-etrVabT ■ I(t - etrvabr G TRLe U TOe) 
iel aZArfl r€ÄD(,nitD<a,tm 

E E E        tkreqvsabr ■ XDR^^^^ • I{t - etrv^ G TRLe U TO1) 
i€l a&Arfi r£RDbnRDia<diT 

+ E E E tkreqvsabr ■ XTR^H-^V^ ■ /(* " <*™abr G TAL* U TO£) 
iel a&Arfi reRDbr\RDia,trn 

+ E    E   **™***<*r • ^-<*"w • ty - etrtw G TRÜ U TO') 
a€Arfl r€RBab 

^     E      E rtrproP*™ ■ TKRAaVbt Vfc G £arp, t G Ti?L£ U TO£ 

6'GST(,,orpaeAtfcl. 
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The cascade modification activates rows indexed by the extended-active set, columns 

indexed by the active set and duplicates columns indexed by the extended set. 

UTE£: utilization rate 

2J z2       z2        zJ  flttimearf ■ XAart-(/-l) 

+ 2J 2J        z2        zZ flttimearf ■ XTiart-(f-l) 
teT' iZlfob r&RDia,trn f€FT 

+ 5Z 5Z       Yl        ]C  flttimearf ■ XDRiart-U-i) 

+ 2J  Z2        zJ zJ  flttimearf ■ XTRiart-y-i) 
t€T* i€lfob reRDia,tm f€FT 

+ ^2 ^ shuttimeia • XSiat + ]P ^   ^ flttimearf ■ yart_(/_i) 
je//o6 ter^ ter^ r€ÄS6 /EFT 

+I(a E Atkr) ■      ^2     5Z   z\^ tkr"timeabb' ■ TKRAabb't 
bZBtkr 6'eBarp teT* 

+ ^ Yl hrsper • rttrvab ■ TKREC^t 
b€ße teT* 

+ J^  ^hrsper-rttrVab-TKRBCabt 
b€Btkr t<=T£ 

< 2_, cumacat ■ uratea Va G A 

The lack of utilization block specificity allows some modeling freedom, hence we 

re-define these blocks as the active set: T* = TRLe. Because missions launched in a period 

usually consume flight time in subsequent periods, the UTE constraint still overlaps the 

previous subproblem, and must be relaxed. However, since the majority of the associated 

columns are indexed by the active set (plus some indexed by the extended set), enforcing 

UTE£ provides nearly the same restriction on the feasible region. 
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ACCONSUME*: max acft usage to lessen rounding effects 

E     E      E ™ntimearf • XA.H/-1) ■ / (*-(/ - 1) € TRL1 U TO') 
i€l r€RDia,dir f€FT 

+ E     E     E ^Braimear, ■ AT^-y-!, • I {t-(f - 1) e TÄ2/ U TO') 
ielfob r€ÄDio,trn /GJT 

E     E      E msntimearf • ^DBw-y-i) ■ / (*-(/ - 1) € TÄZ/ U TO«) 

+ E     E     E mmtimearf ■ XTE^^-D ■ I (t- (/ - 1) € TÄL' U TO') 

y>    hrsper      ^ 
£—' shutrateai 

+ E E ™*»*™W • ^rt-(/-i) • I {t-(f - 1) € TÄL< U TOO 
re HS /€.FT 

y-   y;    *Z2Z-.TKRAaH,t 

6€ßtfcr V&Barp 

+I(a € Atfcr) 

+ V^ rttrvab • hrsper • TKRECabt 
b€Be 

+ y~^ rttrvab ■ hrsper ■ TKRBCabt 

+ £ fcrsper • ÄCWaw +  £ fcrsper • [ÄCWT«« + Ä0JVÄ«w] 
6eße 6eßsup 

< hrsper ■ cumacat Va G A, £ 6 T.RL U TO 

The cascade modification activates rows indexed by the extended-active set, columns 

indexed by the active set and duplicates columns indexed by the extended set. 
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DCAPACITY£: aircraft capacity for direct delivery 

^    DTONSiact  , paxfraCg-DTONSi^^t     . . 
/  , I • i (<2 G Apax) 

csclncc Vurecayiac maxpaxa 

<       22      ran9efaCiar ■ [XDiart-trvar + XD*Riart-trvar] 

\/iEl,a£A,teTRLenTWi 

The cascade modification activates rows and columns indexed by the active set, and 

duplicates columns indexed by the extended set. 

TCAPACITY*: aircraft capacity for transshipments 

ETTONSjgct     paxfracg ■ TTONSiiatPaXtt   T(       A    N 

c£C ncc PurecaPiac maxpaxa 

—     z_s     rangefaciar ■ [XTiaTt^trVar + XTRiart-trvar} 
r€RDia,trn 

Vz G Ifob,aeA,te TRLe n TWi 

The cascade modification activates rows and columns indexed by the active set, and 

duplicates columns indexed by the extended set. 

SCAPACITY^: aircraft capacity for shuttle deliveries 

STONSiact , paxfraca- STONSiwxt 
purecapiac 

< srangeia ■ XSiat 

EÖlUlVÖiact       paXjraCg ■ Ji 1/iVdi,gtPgX,t     T( .       s 
 1 • 1 [a G Apax) 

ceCaficc PurecaPio-c                    maxpaxg 

Vz G Ifob,aeA,te TRL1 n TWi 

The cascade modification activates rows and columns indexed by the active set. 
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DPAXCAP*: aircraft capacity for direct delivery of pax 

DTONSiA,pax,t <        ^J       maxpaXa ■ [XDiart-trvar + XDRiart-trVar] 
r€RDiaidir 

Vi € I, a € Am*, t G TRLe n TWi 

The cascade modification activates rows and columns indexed by the active set, and 

duplicates columns indexed by the extended set. 

TPAXCAP*: aircraft capacity for transshipment of pax 

TTONSita,pax,t <        ^2       maXPaXo. • [XTiart-trvar + XTRiart-trvar] 
r£RDia,tm 

Vz G If», a G Amte, t € TRLe n TWi 

The cascade modification activates rows and columns indexed by the active set, and 

duplicates columns indexed by the extended set. 

SPAXCAP*: aircraft capacity for delivery of pax by shuttles 

STONSi,aiPax,t < rnaxpaxa ■ XSiat        Vz G Ifob, a G Amix, t € TRLe n TW{ 

The cascade modification activates rows and columns indexed by the active set. 

MEETDEM*: meet demand for each line id 

J2 J2 DTONSiact + NOGOic 
a&Ac t&TWi 

+I(l G Ifob) ■ Y, Yl STONSiact + Y,GTONSict = derriic 

_a€Ac teTWi                                 t&T 

; . TW. (- T TlTt 
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The cascade modification activates this row only if the line id's delivery window is 

a subset of the active set. Thus, many of these rows are Lagrange-relaxed, which motivates 

the following supplemental constraint. 

MEETDEM1*: do not exceed demand during each subproblem 

J2   J2   DT0NSiact + I{i e Ifob)- 
aeAc t€TWi 

< derriiC J2 Yl ST0NS^t+53 GT0NSict 
a€Ac t&TWi t&T 

Vc e C, Vi: (TWi n [TO1 U TRLe] ^ 0, TW{ <£ TRLe) 

MEET DEMand 1: Tons delivered can never exceed demand for any subproblem. 

This bounds the DTONS, STONS and GTONS variables when the MEETDEM con- 

straint is Lagrange-relaxed. The cascade modification activates this constraint whenever 

the line id's delivery window includes elements of the active set, unless the MEETDEM 

constraint is active. 

TRANSTONS*: flow balance for transshipped stons 

J2 TTONSiact = Y, STONSiact + GTONSict Vi € I/o6, c e C, t e TW{ n TRÜ 
a£Ac a€Ac 

Because of the time-index shift in the GTONSict re-definition, the only cascade 

modification activates rows and columns indexed by t e TWi D TRL . 

INITCREWS€=1: initialize crew placement 

53  SCREWSabt + crewrata-  ]T TKRBabt 

beBcrm b€Btkr 

= crewrata ■ newacat Va, t = 1 
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The cascade modification activates these rows and columns only in the first sub- 

problem. 

SCREWS AL1: strategic crew balance of flow 

SCREW Sau+x = SCREW Saht 

+ 2_^ /_^ [X Diart-ctrVabr + X D Riart-ctrvabT\ 

i&I r€RDiatdirnRb,ori 

+   y / [XTiart-ctrVabr ~\~ X 1 JMart-ctrvabr\ 

iZlfob T&RDia,tTnC\Rb,oTi 

~T /  y Yart—ctrvabr 

rSRBnRb.ori 

— y y ^ [XDiart-etTVabr ~t~ X VKiart-etrvabr\ 

i€l T€RDia^ir<^Rh,dst 

— y y [XTiart-etrVabr + X1 rLiart-etrvabr\ 

ielfob r€RDia,trn<~\Rb,dst 

~ y J *art—etrvabr 

reRBnRbtdst 

+I(b e Be) ■ crewrata ■ [TKRCEabt-cttn,.* - TKRECM] 

+I(b € Bsup)- 

crewrata • [THCHOPabt-i - THCHOPM + I(t = 1) • IRONTab] 

+I(b € BSrecy 

crewrata ■ [THCHOPRabt-i - THCHOPRabt + I{t = 1) • IRONR,*} 

+7(6 € Be,t^ l,newacat > 0) • crewrata ■ ALLOCabt 

+   ]£   DHCREWah'u-dhtrvb.b-   J2  DHCREWakvt 
b'eBcrw b'ZBcrw mnW 

\/a,b e BarW, Vt:teT,t + le TRLe 

As with a proximal cascade, this constraint is defined and indexed on t + 1. The 

cascade modification activates rows and columns indexed by the active set, and duplicates 

columns indexed by the extended set. Additionally, IRONTab and IRONRab are active 

for t = 1. 
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MOG£: airfield capacity 

\^ V^ S~^ gtimeabr • acpkgab ■ [XDiart-etrvabr + XDRiart-etrvabr\ 

i€l aeA r£RDbnRDia,dir 
■I{t - etrvabrE TRLe U T0£) 
+  Y,  Y,    X    9ti™a*r-acpkgab-XDiart-trVar-I(t-trvareTRLeUTOe) 

i€h,dst "SA r6ÄZ?io,dir 

+ £j]    5]    gtimea6r • acpkgab ■ XDRiart-trv„ ■ H* ~ t™ar G TÄL£ U TO') 

i€h,d3t aSA reRDia,dir 

+ V^ V^ Y"^ gtimeabr ■ acpkgab • [XTiart-etrvabr + -XT-Riart-etnw] 

iel a€A r€RDbnRDia,trn 
■I{t-etrvabreTRLtUTOt) 
+  H  X)     X    »*»^ea6r-acpfcpfl6-XTiart_trvor-J

r(t-*rt;aP€rÄL<urO/) 

«S-^6 trn a€A rS.RDia,trn 
+    X    X       J2       <^me<^ • aC^fc^b • ^TRiart-trvaT • /(* " *™ar € TÄL* U TO ) 

+ y^1 2_. sgtimeab • acpkgab ■ XSiat 

+        Y        X hrsPer ■ acPk9°b • [THCHOPavt + THCHOPRavt] 
V£BsuPr\BSb,dwn "6A 

a<=A r€RBab 

+7(6 G Btkr) ■     y~/ hrsper ■ acpkgab • TKRBau 
.agAtfcr 

4. y^   y^ ^ dpc£a • gtimeabr • acpkgab • XDiart-etrvabr 

iel a£Arfl r&RDbtdivnRDia,dir 

■I(t - etrvabr G TRLe U TO1) 
+ y^ y^ y~^ dpc£a • gtimeabr • acpkgab ■ XDRiart-etrvabr 

i&I   a&Arfl reRDbidiv<~lRDia,dir 

■I(t-etrVabreTRLeUTOe) 

+ y^ y^ y~^ dpcta ■ gtimeabr ■ acpkgab • XTiart-etrvabr 

iel aeArfl r€RDbtdivnRDia,trn 

■Ht-etrvabreTRL'uTO*) 
+ y~^ y^ y^ dpcta ■ gtimeabr • acpkgab • XTRiart-etrvabr 

■I{t-etrvabreTRLeUTOe) ^ £ 

+ Y     X    dpcta ' 9timeabr' acPk9*>> ■ Yart-etrvabr • I{t - etrvabr € TÄL' U TO ) 

< mogb ■ mogefh Vfe G B \ I35up \ Barp\ iW t G TÄL« U TO* 
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The cascade modification activates rows indexed by the extended-active set, columns 

indexed by the active set and duplicates columns indexed by the extended set. 

Non-negativity of all variables. 

E.        NRMO CASCADE RESULTS 

Because of its structure and complexity, NRMO is an excellent model to test prox- 

imal and Lagrangian cascades. A moderately sized scenario consists of hundreds of line 

id's; large scenarios can easily overwhelm current computing capabilities. Additionally, the 

model should produce results that are intentionally myopic, since that is a characteristic of 

the underlying airlift system. 

Three NRMO problem instances are used to test cascade performance. The first 

problem is the primary test scenario used at NPS to verify and validate air mobility linear 

programs. We took the remaining two scenarios from an ongoing study by RAND [Stucker 

and Melody, 1996]. 

The performance tests measure the effect of three parameters on the proximal- 

Lagrangian gap. Typically, larger values of the proximal cascade width, caswid, proxi- 

mal cascade overlap, v, and Lagrangian cascade width, Iwid should all reduce the gap. The 

tests also examine the effect of these parameters on solution time when both simplex and 

barrier methods solve the cascades. 

Each of the three problem instances is generated by GAMS [Brooke, et al, 1992], 

and written into MPS format. Additionally, the GAMS output provides a file that maps 

each row and column to its associated time index. The cascade logic executes in C using 

the CPLEX callable library version 3.0 [CPLEX, 1994]. A utility translates the solution 

reported by CPLEX to a GAMS compatible format. Unless otherwise noted, the computer 

used is an IBM RS6000/590 with 512MB of RAM. All times are given in CPU seconds. 

1. Notional Southwest Asia Scenario 

The notional Southwest Asia scenario was originally designed to test THRUPUT 

II [Lim, 1994], one of NRMO's predecessors. It includes 21 line id's, 7 aircraft types, 35 
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routes and 30 time periods. The associated linear program has 4,100 rows, 7,400 columns, 

39,000 non-zeros, and a maximum staircase overlap of two periods. In this scenario, a 

contingency in Southwest Asia (SWV) requires deployment of several Army and Marine 

Corps brigades from CONUS, 15 Air Force fighter wings from CONUS and Europe, and 

an Army mechanized division from Europe. The requirement intentionally exceeds delivery 

capacity in order to strain the system and identify airlift bottlenecks. 

Cascade        Cascade 

Width Overlap 

Monolith 

Upper Lower 

Bound Bound 

294.1 n/a 

%Gap 

n/a 

Proximal Lagrange Total 

Time (sec)        Time (sec)        Time (sec) 

n/a n/a 61 

20 

20 

20 

18 

18 

18 

5 

10 

15 

5 

10 

15 

296.6 

294.6 

294.1 

303.6 

296.7 

294.1 

286.9 

290.0 

292.5 

262.0 

287.1 

291.6 

3.4 

1.6 

0.6 

15.9 

3.3 

0.9 

47 

57 

94 

46 

67 

124 

19 

20 

18 

18 

21 

18 

66 

77 

112 

64 

88 

142 

15 

15 

15 

10 

10 

5 

10 

12 

5 

7 

303.3 275.9 9.9 

295.4 286.3 3.2 

294.7         285.2 3.3 

305.3 

300.0 

273.7 

266.4 

11.6 

12.6 

41 

73 

107 

41 

58 

19 

19 

19 

20 

20 

60 

92 

126 

61 

78 

Table 1. Relative gaps and solution times for the Southwest Asia scenario vary with cascade parameter selection. The first 

two columns show proximal cascade widths and overlaps; Lagrangian cascade widths are all 15. The remaining columns 

show the performance (computing times are in seconds on an IBM RS6000/590 with 512MB RAM). For example, a prox- 

imal cascade with width 18 and overlap 10 gives an upper bound solution value of 296.7; the corresponding Lagrangian 

lower bound is 287.1, resulting in a gap of 3.3%. The proximal and Lagrange solve times are 67 and 21 seconds, respec- 

tively, for a total of 88 seconds. The first row of the table gives the monolith's solution value and time, which provides 

baseline for the other runs. Each test uses CPLEX3.0 [CPLEX, 1994] with primal simplex method and steepest edge a 

pricing. 

Table 1, and Figures 6 and 7 illustrate that solution quality improves with increased 

cascade overlap and width. Figure 6 shows a strictly decreasing gap with increasing cascade 

overlap for cascade widths of 18 and 20. These decreasing gaps come at a computational 

cost, however, as indicated by the proximal cascade solution times. Figure 7 also shows 

generally decreasing gaps with increased cascade width, albeit less convincingly. 
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Figure 6. Solution gaps for the Southwest Asia scenario decrease significantly with increased proximal cascade overlap. 
The triangles show the proximal (solid line) and Lagrangian (dotted line) cascade solution values for an 18 period proximal 
cascade width; the squares show the solution values for a 20 period width. All Lagrangian cascade widths are 15. The 

absolute gap, measured by the vertical distance between proximal and Lagrangian solution values, is much smaller with 

a 10 period overlap than a 5 period overlap, and smaller still for a 15 period overlap. 
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Figure 7. Solution gaps for the SouthwestAsia scenario generally decrease as proximal cascade width increases. Proximal 

cascade width has a smaller effect on the absolute gap than the proximal cascade overlap. 
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Cascade Cascade Upper Lower 
%Gap 

Proximal Lagrange Total 

Width Overlap Bound Bound Time (sec) Time (sec) Time (sec) 

Monolith 294.1 n/a n/a n/a n/a 61 

20 5 296.6 286.4 3.6 47 11 58 

20 10 294.6 288.7 2.1 57 10 67 

20 15 294.1 288.1 2.1 94 11 105 

18 5 303.6 273.2 11.2 46 11 57 

18 10 296.7 279.6 6.1 67 11 78 

18 15 294.1 281.4 4.5 124 10 134 

15 5 303.3 267.8 13.3 41 11 52 

15 10 295.4 281.3 5.1 73 10 83 

15 12 294.7 280.2 5.1 107 11 118 

10 5 305.3 265.8 14.8 41 11 52 

10 7 300.0 263.6 13.8 58 13 71 

Table 2. This table depicts Southwest Asia scenario results with the Lagrangian cascade width equal to 10. These results 

are similar to the Iwid =15 test (see the previous table), although the gaps are slightly larger. This is due to the greater 

number of Lagrange-relaxed rows. Note that the Lagrangian cascade solves faster with three subproblems (this table) than 

two subproblems (previous table). 

Table 2 depicts the SWA scenario results using the same proximal cascade parame- 

ters as Table 1, but with a Lagrangian cascade width (Iwid) of 10. As expected, the lower 

bounds are weaker for Iwid = 10 than for Iwid = 15, because the monolith is split in two 

places for this relaxation. However, the Lagrange solution times when Iwid = 10 are about 

half as long as their Iwid = 15 counterparts. This is despite the fact that the Iwid = 10 

cascade requires one more subproblem than a Iwid = 15 cascade. 

In this problem, temporal myopia has only a minor effect on solution quality even 

when the scheduling horizon is reduced by as much as two-thirds. When the proximal 

cascade width is only 10 periods, the solution values are still within 4% of the monolith 

solution. Longer solution horizons produce even closer results. 

2. European Infrastructure Scenario I 

Concurrent with this research, a RAND Corporation study for the Office of the Sec- 

retary of Defense (OSD) is examining European air bases transited by USAF airlifters. The 
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purpose of this study is to determine which bases have insufficient infrastructure to ad- 

equately support a Major Regional Contingency (MRC) in Southwest Asia [Stucker and 

Melody, 1996]. The problem consists of 220 line id's, six aircraft types, 22 routes, and 30 

time periods. Approximately 75% of the scenario's movement requirements originate in 

CONUS. The corresponding linear program has 27,000 rows, 126,500 columns, 921,500 

non-zeros, and a maximum staircase overlap of two periods. 

Cascade Cascade Upper Lower 
%Gap 

Proximal Lagrange Total 

Width Overlap Bound Bound Time (sec) Time (sec) Time (sec) 

Monolith 106.1 n/a n/a n/a n/a 980 

20 5 108.7 93.8 15.8 1010 590 1600 

20 10 106.9 101.8 5.0 1260 704 1964 

20 15 106.9 102.9 3.9 1907 663 2570 

18 5 107.4 91.8 17.0 933 630 1563 

18 10 107.6 98.3 9.5 1352 605 1957 

18 15 107.1 100.4 6.7 2652 715 3367 

15 5 109.2 84.5 29.3 959 659 1618 

15 10 107.6 96.0 12.1 1527 650 2177 

15 12 107.5 99.9 7.6 2307 601 2908 

10 5 113.3 75.8 49.4 1061 639 1700 

10 7 110.9 83.7 32.4 1483 770 2253 

Table 3. Computational results for European Infrastructure I also show that relative gaps and solution times vary with cas- 

cade parameter selection. The solve times are much longer than Southewst Asia scenario solve times due to problem size. 

All runs use the CPLEX3.0 Barrier algorithm [CPLEX, 1994]. Lagrangian cascade subproblems have 15 periods each. 

The first row is the monolith baseline; subsequent rows show performance using various proximal cascade parameters. 

All times are in seconds. 

The results of this scenario (see Table 3, and Figures 8 and 9) are generally consistent 

with those of the first test. Figure 8 shows a pronounced reduction in gap as cascade overlap 

increases, while Figure 9 shows a more moderate reduction with increased cascade length. 

Upper bounds are of better quality than lower bounds, due to the sensitivity of the lower 

bound to small errors in the Lagrangian penalties. Thus, the proximal cascade results show 
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Figure 8. This Figure depicts cascade solution values for the European I scenario when proximal cascade overlap is 
varied. Proximal cascade overlap has as large an effect on this scenario as it did on the notional Southwest Asia scenario. 

As before, increasing the overlap reduces the gap. 

15 16 17 18 19 
Cascade Width, caswid 

 Proximal    Lagrangian v = 5   ---v=10 

Figure 9. Solution gaps for the European I scenario are reduced with increasing proximal cascade width. These reductions, 

although smaller than those seen in the Southwest Asia scenario, are still quite evident. 
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that the effects of myopia are small, since most of the upper bound solution values are within 

a few percent of the monolith value. 

3.        European Infrastructure Scenario II 

This scenario is a continuation of the RAND study for OSD. However, it includes 

different assumptions regarding international overflight permissions, and includes a larger 

Civil Reserve Air Fleet (CRAF) component. As before, the problem consists of 220 line 

id's and 30 time periods, but there are now eight aircraft types and 24 routes. Additionally, 

the routes are generally more circuitous than those of European Infrastructure I. The cor- 

Cascade Cascade Upper Lower 
% Gap 

Proximal Lagrange Total 

Width Overlap Bound Bound Time (sec) Time (sec) Time (sec) 

Monolith 247.3 n/a n/a n/a n/a 860 

20 5 266.2 155.7 71.0 726 391 1117 

20 10 251.1 204.9 22.5 926 391 1317 

20 15 248.4 206.7 20.8 1399 353 1752 

18 5 263.4 156.2 68.6 878 400 1278 

18 10 252.0 173.8 45.0 1297 397 1694 

18 15 249.5 176.3 41.5 2087 349 2436 

15 5 282.5 148.4 90.4 747 352 1099 

15 10 262.8 160.1 64.2 1247 373 1620 

15 12 255.4 176.8 74.0 1909 378 2287 

Table 4. The European Infrastructure II scenario produces considerably larger gaps than the first infrastructure scenario. 

Much of the difference results from a weaker Lagrangian bound. As before, the proximal and Lagrangian cascades use 

the CPLEX3.0 Barrier algorithm [CPLEX, 1994]. All Lagrangian cascades have 15 periods each. Times are in seconds. 

responding linear program has 29,400 rows, 115,700 columns, 901,600 non-zeros, and a 

maximum staircase overlap of two periods. 

Table 4 shows the results for a variety of proximal cascade widths and overlaps. 

These results demonstrate that this problem instance is more affected by myopia than the 

first two. Consequently, the smallest gap computed is 20.8%, although the largest part of 

that gap results from a loose lower bound. 
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4.        Solve Time Performance 

a.        Cascade Versus Monolith 

The three scenarios do not exhibit pronounced time savings when using cas- 

cades. However, the test platform is a computer with sufficient memory for monolith so- 

lution without paging. In order to verify that cascades save time when memory is limited, 

we reduce the problem size of the two European scenarios by limiting line id delivery win- 

dows. This reduction allows solution by a Dell Pentium Pro 200 MHz desktop computer 

with 64 MB RAM. 

Table 5 shows that cascades save up to 80% of the time required for monolith 

solution. The savings come at a moderate cost in solution quality, since limited memory 

requires that cascade subproblems have small widths. This consequence is minor in models 

such as NRMO, where myopia should be enforced regardless of available memory. 

Cascade        Cascade        Upper Lower Proximal        Lagrange Total %Time 

Width Overlap        Bound        Bound       ° Seconds Seconds Seconds        Savings 

Reduced European Infrastructure I (14,442 rows, 64,252 columns, 462,645 non-zeros): 

Monolith 106.9 n/a n/a n/a n/a 4410 n/a 

10 5 116.7 90.2 29.4 572 310 882 80.0 

10 7 115.3 92.0 25.2 844 310 1154 73.8 

15 5 109.6 96.1 14.1 4080 310 4390 0.5 

Reduced European Infrastructure II (16,874 rows, 63,336 columns, 453,663 non-zeros): 

Monolith 239.7 n/a n/a n/a n/a 4169 n/a 

10 5 245.7 178.4        37.7 532 476 1008 75.8 

10 7 243.0 203.5        19.4 760 480 1240 70.3 

15 5 242.9 218.1 11.4 2160 480 2640 36.7 

Table 5. Cascades offer a significant time savings when the monolith cannot be solved with installed memory. The 

computer used for these results is a Pentium Pro 200 MHz desktop with 64 MB RAM (previous results use an IBM 

RS6000/590 with 512 MB RAM). The first row of each scenario shows the monolith solution value and time using the 

CPLEX interactive barrier solver [CPLEX, 1994]. The next two rows in each scenario indicate cascades offer a dramatic 

time savings when moderate cascade widths are used. The final row of each scenario shows that much or all of this savings 

is lost when cascades also require paging. 
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b. Barrier Versus Simplex 

The barrier algorithm solves cascades of the test scenarios faster than the 

simplex algorithm, even when large cascade overlaps permit the exploitation of advanced 

simplex bases. Figure 10 depicts solution speeds for proximal cascades with different num- 

bers of subproblems using the Notional SW\ scenario on the IBM RS6000/590.   The first 

120 

20 
Monolith Barrier 
 1 1 —I  

4 5 
Number of Cascades 

-»- Simplex -*- Barrier 

Figure 10. Large problems solve much faster using the barrier algorithm (IBM RS6000/590). The vertical axis shows the 

notional Southwest Asia cascade solution time in seconds; horizontal bands represent the monolith solution time. The 

horizontal axis shows the number of subproblems, which is a function of cascade width, casv/id, and cascade overlap, 

v. The plots represent the simplex and barrier times with caswid fixed at 15, and v = 5,10, and 12. These parameter 

settings specify the number of subproblems to be 3,4, and 6, respectively. 

impression gleaned from the figure is the disparity between simplex and barrier solve times. 

This is not surprising, given that CPLEX recommends the barrier for problems with more 

than 1,000 rows and columns [Klotz, 1996]. However, the relative trend of the solve times 

is surprising. Compared with the simplex cascade, the barrier cascade appears to perform 

better as the number of subproblems increases, as shown by the divergent trend of the two 

plots. This is inconsistent with the notion that simplex cascade subproblems are fully ex- 

ploiting advanced bases. If that were true, simplex performance would improve (relative 
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Figure 11. This plot includes the same data as in the previous figure (Notional Southwest Asia, caswid=\S), but the 

vertical axis depicts the solve times as a ratio of the cascade solution to the monolith solution. Because the simplex 

ratios are lower than the barrier ratios, this figure shows that simplex cascades perform better than barrier cascades when 

compared to their respective monolith solution times. 

to the barrier method) as the overlap increases, since more of the basis is preserved from 

subproblem to subproblem. 

Although exploiting advanced bases during the proximal cascade does not 

appear to be effective, there is one encouraging simplex performance measure. Relative to 

their respective monolith solve times, a simplex cascade appears to solve faster than a barrier 

cascade. Figure 11 illustrates this by depicting the vertical axis as the ratio of cascade to 

monolith solve times for both simplex and barrier. This result is consistent with the idea that 

simplex solve times increase faster with problem size than do interior point method solve 

times, since solving the large monolith is relatively more time consuming for the simplex 

method. Thus, cascades appear more attractive when a barrier algorithm is unavailable. 

E        NRMO SUMMARY 

The NPS/RAND Mobility Optimization is the most detailed military mobility op- 

timization model ever built. It incorporates all the features of prior models from NPS and 
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RAND, as well as some additional features. As such, it is a huge model, and solving the 

monolith may not always be possible. Moreover, NRMO models an imperfect schedul- 

ing process, and therefore should incorporate myopia. For these reasons, it provides the 

motivation and initial test platform for the combined proximal and Lagrangian cascades. 

NRMO exhibits the basic staircase structure required by proximal and Lagrangian 

cascades, but is complicated by numerous additional constraint types. The NRMO formu- 

lations in this chapter illustrate how cascades can accommodate a wide variety of constraint 

types, although minor alteration is sometimes required. 

Upper bounds from the proximal cascade are typically within a few percent of mono- 

lith optimal. Lower bounds from the Lagrangian cascade have generally less quality, but 

are often still within a few percent of monolith optimal. Cascade solution times are less 

than the monolith solution times when small cascade overlaps are used, or when installed 

memory is limited. 

With the cascades now demonstrated on a large and complex model, some general- 

ization is warranted. That generalization is the subject of the next chapter. 
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V.       USING CASCADES WITH GENERAL LPs 

We now examine the application of cascades to general linear programs. Specifi- 

cally, we address what conditions make cascading desirable, and how to improve cascade 

solution quality. Of foremost concern is assessing cascade suitability, i.e., whether or not 

a cascade solution is feasible and likely to approximate the monolith solution. A staircase 

structure with minimal row width (width is the range of the non-null cascade set indices ap- 

pearing in a row) is perhaps the best indicator of suitability, because all columns associated 

with each row are proximally related. We propose a simple heuristic to gauge a model's 

staircase structure by examining a temporal, spatial, or other ordering of rows and columns. 

Next, we consider some motivations for cascading: 1) inability to solve the monolith due to 

its large size, 2) desire to intentionally induce solution "myopia," and 3) isolation of sub- 

problems that may solve the monolith faster. Cascades are appropriate if a suitable model 

exhibits, or can be reformulated to exhibit, any of these. Finally, we offer several methods 

to incorporate dual information into a proximal cascade, thereby reducing the gap between 

proximal and Lagrangian cascade solution values. 

A.        WHEN WILL CASCADES WORK? 

An arbitrary model monolith may or may not be susceptible to cascade solution. 

This section offers a method to select a cascade index set that may facilitate cascade fea- 

sibility and achieve a good solution. We also examine several model constructs that may 

reduce cascade suitability, and suggest monolith reformulations that are more amenable to 

cascades. 

1.        Gauges for Cascade Suitability 

In order to determine suitability, we develop several gauges that can either be used to 

evaluate a candidate cascade index scheme, or to assess a reformulation to enhance cascade 

suitability. Assessing suitability a priori requires a cascade index set that prescribes an 
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ordering of rows and columns. The key is to choose an index set where the maximum 

and average row widths are small; an arbitrary ordering is not likely to exhibit this property. 

Although time is usually the most intuitive choice for the cascade index, location or priority 

may also be good choices. Ordering by one of these index sets is likely to reveal the staircase 

structure in a monolith, if such a structure exists. 

We offer the following gauges that suggest suitability of a linear program: 1) the 

cascade factor, casfactorT, which is the average row width normalized for the non-null 

cardinality of each candidate index set, 2) the maximum width factor, wT, which is the 

maximum normalized row width, and 3) the always active rows, allactT, which is the num- 

ber of rows that have no correspondence with non-null cascade indices. The following 

definitions and notation are useful: 

• Model rows and columns have one or more candidate cascade index sets. Each 
setT = {0}U{1,2,..., \T\} is composed ofa null element and a non-null ordinal 
subset. An example index is time, where 0 is the null index of a row or column 
without a time-period index. 

• Let model rows be labeled by i = {1,2,..., \I\}, model columns be labeled by 
j = {l,2,...,|J|}. 

• Let aij be the coefficient in row i and column j. 

• Let tj be the index from set T in column j. 

• Define maxtiT as the maximum column index i, associated with row i. 

• Define mintiT as the minimum non-null column index tj associated with row i. 
mintiT = 0 if all associated columns are null indexed. 

• Let wtotalT = J2i(maxtiT -mintiT), the sum of row widths. 

• Let averagewT = wtotalT / \I\, the mean width of all rows. 

• Define straddle tT as the number of rows containing non-null elements of T such 
that maxtiT > t and mintiT < t. 

With these definitions, we can compute the suitability gauges: 

f averagewr / |T|, if mint [straddle tT\ > 0 
casfactorr   j ^ tf ^ [straMetr] = 0 

wT (maxj [maxtiT — mintiT)) / \T\ 

allact T        the number of labels i such that maxt iT = mint iT 
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Of these three gauges, cascade factor (casfactorr) is the most comprehensive indi- 

cator of cascade suitability, since it considers every row's non-null width, casf actor T is zero 

if the problem is entirely separable into two or more subsets of T, which implies that prox- 

imal cascade subproblems may be solved without loss of monolith optimality. casf actor? 

does not attempt to distinguish the relative size or number of separable subproblems. 

Proximal and Lagrangian cascade solution qualities are conjectured to be better 

when casf actor T (greater than 0), w?, and allact? are small. Small row width suggests 

fewer fixed columns and fewer Lagrange-relaxed rows in the proximal and Lagrangian 

cascades. 

Maximum row width is also an important indicator of cascade suitability. A single 

row that links all non-null indices may result in an infeasible cascade or a solution of low 

quality, since satisfying this row may require that all associated columns be simultaneously 

active. Consequently, smaller values of WT should indicate better cascade suitability. 

Finally, allact-r reports the number of rows whose associated columns have null in- 

dex tj = 0. These rows must be handled by exception when forming cascade subproblems, 

since they are not accommodated by the ordering prescribed by the candidate index set. As 

with casf actor T and %, smaller values ofallactr should indicate better cascade suitability, 

since fewer exceptions must be dealt with. 

Although these gauges may correctly predict cascade suitability, there are some 

model constructs that cause them to give an incorrect assessment. These gauges can also 

indicate the presence of model constructs that may be altered to increase cascade suitability. 

We discuss several of these constructs below. 

2.        Cumulant Constraints Complicate Suitability 

Small formulation differences can have a marked effect on cascade suitability. Con- 

sider the staircase form of a production-inventory constraint: 

Xt + It-i - It = dt    Vt, 

where Xt, and It, represent production and inventory decision levels in order to satisfy a 
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specified demand, dt. When defined for a contiguous set of time periods, each constraint 

overlaps its predecessor by one period. 

Production-inventory constraints can alternatively be written in a cumulant form 

[e.g., Johnson and Montgomery, 1974, pp. 197-199]: 

X>>5> vt. 
t'<t t'<t 

These two almost equivalent forms yield different values oicasfactor T. Each con- 

straint of the staircase form has width two. In contrast, cumulant constraints have a width 

increasing from 1 to |T|. Although a proximal cascade is unaffected, the cumulant form 

may lower the associated Lagrangian cascade's solution quality because more rows must 

be Lagrange-relaxed. Reformulating cumulants as staircase constraints for the Lagrangian 

cascade provides the simplest redress. 

Even though casfactor T gives a warning when cumulant constraints are present, the 

cumulant form may improve computational efficiency. Consider these two basis matrices: 

S = 

1 0 0 0   0 
1 1 0 0   0 
0 -1 1 0   0 
0 0 -1 1   0 
0      0      0-11 

c = 

1 0 0 0 o" 
1 1 0 0 0 
1 1 1 0 0 
1 1 1 1 0 
1 1 1 1 1 

The basis S arises from a set of tight staircase production inventory constraints, while the 

basis C derives from an equivalent set of cumulant constraints. Note that S = C_1. Be- 

cause of sparseness of the inverse, solver computations could be significantly reduced by 

cumulant constraints. 

3. Rows that are Always-Active 

A proximal cascade relies on a cascade index set that has few rows active in every 

subproblem. Rows whose associated columns all have null cascade index "0" are always- 

active and are tallied by the allact T gauge. Additionally, a row associated with any column 

with null index "0" must be active until the null-indexed column is fixed. Inactivating this 
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row prior to fixing the null-indexed column allows subsequent subproblems to alter the 

column's level, possibly violating the inactive row. 

To illustrate how always-active constraints can reduce cascade suitability, consider a 

modification of problem S from Chapter II. This modification includes some intermediate 

time period r, and variables A and B that are bounded by d in an always-active constraint. 

Zs = min YhtXt 

s.t.   Y a»,Xt'+A -St V1 - * -r 

t'eTSt 

Y att>Xt,+B>st     \/r<t<\T\ 
t'eTSt 

A + B<d 

Xt > 0 W € T    A,B>0. 

Define the proximal cascade subproblems as 

Zn=J2  J2  W+min J2 htXt 

n'<nteTFn' t€TCn 

s.t.        Y      att>Xt, + A>   st-Y,      J2      °«'X"'     Vt£TCn,t<T   (Si.7) 
t'&TSt C\TCn n'<nt> zTSt C\TFn' 

Y     att,Xt> + B>   St-Y,      E      a"'X"'     WZTC^I^T    (SL2) 
t'eTStCiTCn n'<nt'eTStr(TFn' 

A + B<d (S1.AA) 

Xt>0Vte TCn    A,B>0. 

Constraint Sl.AA must be active until both A and B are fixed, which occurs in the last 

subproblem. Furthermore, each row of constraint set Sl.l must be active until A is fixed. 

A similar condition holds with B for each row of SI. 2. 

This example illustrates that always-active rows may or may not affect cascade suit- 

ability. In some cases, always-active rows may cause solution time to be increased modestly 

by enlarging each associated subproblem. For example, if the always-active row is redun- 

dant, and a presolver does not detect the redundancy, the only negative effect is increased 

solution time. But in other cases, always-active rows may inflict infeasibility on the later 
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proximal cascade subproblems because their inactive columns have already been fixed by 

earlier subproblems. This could occur if, for example, problem S above has only one feasi- 

ble solution, and that solution includes A = 0, and B = d. In that case, a cascade that fixes 

A > 0 as a result of early subproblems will culminate with an infeasibility. 

Lagrangian cascade solutions will typically have better quality when few rows are 

"always-active." A proximal cascade row that is always-active must be "always Lagrange- 

relaxed'' in the Lagrangian cascade to preserve the Lagrangian bound for the monolith. If 

optimal Lagrange penalties are not known, low solution quality may result. 

4.        Special Conditions in the First and Last Subproblems 

Linear programs with time, priority or other candidate ordinal cascade index set 

may have special boundary conditions, such as specification of inventory before the first or 

after the last period. Consequently, the first or last subproblem may have unique variable 

or constraint blocks associated with these boundary conditions. Although starting condi- 

tions generally do not affect cascade suitability, ending conditions may result in cascade 

infeasibility due to myopia. In this case, a model reformulation to include elastic persis- 

tent constraints [Brown, Dell, and Wood, forthcoming] may redress the infeasibility. We 

suggest this approach could be applied to a proximal cascade in a production-scheduling 

LP, for example. These constraints would penalize deviation from target inventory values 

at the end of each subproblem. The target values would be specified to approach over time 

the required inventory of the last period, which is strictly enforced. 

The gauges developed in this section suggest cascade suitability of a general LP by 

evaluating three pertinent model characteristics. As we have shown, however, caution must 

be taken when using them. 

B.        WHEN ARE CASCADES APPROPRIATE? 

Cascades are appropriate if monolith structure is suitable and there is sufficient 

reason to warrant any loss of monolith optimality. The following sections outline three 

conditions where a suitable model should be cascaded. 

116 



1. Cascades used with Large Problems 

We use cascades of large problems to reduce solution time. Empirically, solution 

time for a linear program increases super-linearly with problem size. A cascade reduces 

solution times (thereby allowing larger problems) by breaking the monolith into smaller 

subproblems. The cascade implementation of NRMO supports this conjecture. When the 

cascade overlaps are small, both proximal and Lagrangian cascades are solved using roughly 

the same time required by the monolith. The NRMO tests also show a dramatic time sav- 

ings when each subproblem solves using only installed memory and the monolith solution 

requires disk "paging." In this case, the combined proximal and Lagrangian cascades solve 

in much less time than the monolith. 

2. Cascades to Induce Myopia 

Cascades can be used to ensure models do not presume knowledge that is unavail- 

able due to temporal, spatial, or other "remoteness," i.e., lack of proximity. This is the case 

with NRMO, which models a myopic scheduling process. Conversely, enforcing myopia 

without a cascade is very tedious for any moderately sized problem, as demonstrated below. 

Consider how myopia would be expressed in a single monolithic linear program. 

Primal feasibility is enforced for all the constraints, yet dual feasibility and complemen- 

tary slackness must hold for each myopic solution sub-horizon. To illustrate, consider a 

modification of problem S: 

(S) Zs = min ^htXt 
t€T 

i.t.      ^2 attiXt> >st     Vt G T 
t'eTSt 

Xt>0 Vt e T. 
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Problem SCASn is the corresponding proximal cascade formulation: 

(SCASn)   Zn=J2Yl htX?' + min E htXt 

n'<nt£TFn' teTCn 

s.t.   Yl  a«xt>> s*-E   E   a«'x"'  VfeTC" 
t'£TStnTCn n'<nt'€TStr\TFn' 

Xt>0        Vt E TCn. 

Consider a 4-period instance of S with a single period overlap, but with the additional stip- 

ulation that the Xx decision be made prior to knowing the values of hA and s4. A proximal 

cascade formulation SCAS easily incorporates this situation: 

(SCAS1) minx    h^    +h2X2    +h3X3 

s.t   anXx >   si      (Wi) 
021X1   +a22X2 >   s2     (W2) 

a32X2   +a33X3   >   s3     (W3) 
Xi, X2, X3,   >    0 

(SCAS2)    hxXl+   minx   fr2X2    +h3X3 +/i4X4 

s.t       a22X2 > s2 — a2\Xx 

a32X2   +033X3 > S3 
043X3 +044X4   > S4 

X2,        X3, X4,      > 0. 

An equivalent monolithic formulation that formally exhibits "myopia" has to satisfy 

both the dual feasibility and complementary slackness conditions of SCAS1 in addition to 

the original constraints. This can be expressed by introducing surplus columns R and slack 

columns L : 
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(M) 
minx, R,W,L    h\X\ +/12X2 +/13X3 +/2.4X4 

s.t   CL\\XI -Ri = Sl 

a2\Xi +0,22X2 -R2 = S2 (M.l) 

0.32X2 +033X3 -A3 = S3 
+043X3 +044X4 > S4 

anWi +021^2 +Lx = hi 
022^2 +a32W3 +L2 = h2 (M.2) 

033W3     +L3    =    hz 

^^1 = 0   R2W2 = 0   R3W3 = 0 (M.3) 
LiXi = 0   L2X2 = 0   L3X3 = 0 

X1...,X4>0,  Ri,R2,Ik>0,  Ll,L2,L3>0. {MA) 

Two difficulties arise with this formulation, foremost being tractability. Constraint 

block M.3 (complementary slackness) specifies that at most one of each constraint's ele- 

ments may exist in the solution at any time. This represents a logical condition where "at 

most one" element is non-zero, and can be enforced with binary auxiliary variables [e.g., 

Hillier and Lieberman, 1986, p. 394]. Alternately, this condition could be imposed by a 

complementary pivoting algorithm [e.g., Bazaraa, Sherali, and Shetty 1993, pp. 493-500], 

although this is a heuristic. A model with many time horizons may need to enforce myopia 

for each horizon, with a concomitant increase in the number of constraints. 

The remaining difficulty with the above formulation is that it still doesn't completely 

enforce myopia. In the presence of multiple optima, the dual feasibility and complementary 

slackness constraints of M allow selection of the "best" periods' 1,2, and 3 decisions with 

respect to period 4. A genuinely myopic formulation selects arbitrarily among the first 

solution horizon's multiple optima, because it has no foresight that allows tie-breaking. 

The literature offers no other method of enforcing myopia in a monolithic formula- 

tion. Cascades appear to be a very attractive way of modeling this restriction. 

119 



3.        Cascades to Isolate Nearly Independent Subproblems 

Cascades can be used to reduce solution time when independent, or at least not 

strongly interdependent, subproblems can be isolated and solved very quickly. Although 

solving subproblems for this purpose is not the focus of this dissertation, using subproblems 

to produce a crash basis remain a third reason to cascade. We overview this strategy here 

for completeness. 

A classic example of isolating nearly independent subproblems is the multi-commod- 

ity network, with lots of easy network subproblems coupled by joint capacity constraints. 

Solving each network subproblem, ignoring joint capacitation constraints, and then using 

these subproblem solutions to give an advanced starting solution for the monolith may solve 

the monolith much faster than a single cold-start solve attempt [e.g., Staniec 1987]. The 

CPLEX solver [1994, pp. 33-35] offers an option to solve a single imbedded pure net- 

work and then use the solution to crash the monolith. Clearly, the advantage of such an 

indirect approach is enhanced if there are many disjoint subproblems (for example, hun- 

dreds of commodity networks) and if only a few joint commodity capacitation constraints 

are actually binding at optimality. 

Brown, Graves, and Ronen [1987] use cascades to solve the LP relaxation of large 

set partitions. Here the cascade index set is not deduced from any model indexing, but must 

be determined by heuristic topological sorts of the technological coefficients. Once sorted, 

the cascade initially restricts each subproblem to active variables with non-zero values from 

prior subproblem solutions, and then relaxes to all active variables. The authors solve larger 

and larger nested subproblems until the monolith is solved. 

C.        IMPROVING CASCADES WITH DUAL PRICES 

1.        Lagrangian Penalties for Proximal Cascades 

This section explores how subsequent proximal cascade subproblems may exploit 

dual information from previous cascades or subproblems. We then demonstrate two such 

methods on ten small staircase problems. 
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Until now, dual information from a proximal cascade provided penalties only for 

the Lagrangian cascade. However, a similar idea extends to a proximal cascade, which also 

relaxes constraints. In the case of time, a proximal cascade subproblem relaxes the con- 

straints of "future" periods, i.e., the set of periods that are not active in any subproblem 

1,..., n. Lagrangian penalties can "charge" active columns for future resource usage, trans- 

forming relaxed proximal cascade constraints to Lagrange-relaxed constraints. This is sim- 

ilar to the Lagrangian cascade, except Lagrangian subproblems incorporate penalties from 

both prior and future constraints. A proximal cascade explicitly enforces all constraints by 

sending fixed primal columns forward to the next subproblem. This is necessary because 

even optimal Lagrangian penalties do not guarantee that relaxed constraints are satisfied. 

The Lagrangian cascade is not explicitly altered, although any improvement in the prox- 

imal cascade solution quality will be reflected in the associated duals, and therefore the 

Lagrangian cascade. 

To illustrate, consider a modification of problem SCASn for some ßt > 0 : 

zn = Y £ htX?+min S htXt +   £   ßtUt-   Y   °*x* 
n'<nt£TFn' teTCn lastp" <t<t+m        \ t'eTStnTCn 

s.t.   Y  a«Xt'^ Sf-£   £   att,x?' yteTCn 
t'eTStr\TCn ri<nt'eTStnTFn' 

xt>o      \fte Tcr. 
The additional objective term does not provide a straightforward Lagrangian relaxation, 

since it only includes active columns, rather than all columns from the original row. How- 

ever, the formulation makes clear the intention to reward satisfaction of rows in subproblem 

n + 1 by columns in subproblem n. By ignoring the constant term, the desired formulation 

is 

{SLn) Zn=Y   £  MT' + min Y htXt~      £      ßt     £     att'Xt' 
n'<nt£TFn' t£TCn lastpn <t<t+m      t'eTStr\TCn 

s.t.   Y  a«,Xt'^ st~£   £   att,x?' wteT°n 
t'eTStHTC71 n'<nt'€TStr\TFn' 

Xt>0        vt e TCn. 
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Assuming ßt exists only for t € T, the proximal cascade solution value remains unmodified: 

nSJVC teTF" 

This formulation not only enforces feasibility of active rows, but encourages satis- 

faction of future subproblem rows through the use of some ßt > 0. Grinold [1983] intro- 

duces a similar technique for infinite horizon programming, although his formulation also 

accounts for the contribution of inactive columns, and retains the constant term as a measure 

of "salvage." 

The Lagrangian penalty formulation requires exogenous specification of the La- 

grange multiplier, ßt. How one selects a proper value depends on the underlying motivation 

for the cascade. If omniscience is acceptable and multiple series of cascades (proximal and 

Lagrangian cascades performed more than once) can be made, the multipliers for a subprob- 

lem can be taken from the corresponding constraints of an earlier solution of the same sub- 

problem. Each subproblem receives prices from future periods of the previous series, and 

re-solves based on those prices. On the other hand, if myopia must be enforced, multipli- 

ers are passed forward from "similar" constraints of previous subproblems. Computational 

results using each of these strategies are discussed next. 

a.        Iterated Lagrange Multipliers 

Iterated Lagrange multipliers derive Lagrangian penalties from the previ- 

ous cascade series. In tests described in this section, these series are run until no further 

improvement in solution quality occurs. 

Instances of model S with 20 periods and varying staircase overlaps m pro- 

vide a test case for Iterated Lagrange multipliers. Problem S is reformulated into subprob- 

lems of the form SL n. The test considers 10 different sets of overlap and cascade para- 

meters. The penalties (ßt) for Lagrange-relaxed constraints in the proximal cascade come 

from the previous series; the initial series of each set uses ßt = 0. Subsequent series' penal- 

ties derive from the last subproblem in which the corresponding constraints are active. The 

Lagrangian cascade selects penalties from the most recent proximal cascade subproblem in 
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which the corresponding constraints are active. Table 6 describes the results. 

Set# m caswid V lwid 
Series 1 

% gap 

Series 2 

% gap 

Series 3 

% gap 

Series 4 

% gap 

1 1 4 3 5 7.0 2.0 2.0 .2 

2 1 5 2 5 10.7 - - - 

3 1 7 2 7 11.5 1.7 2.0 0 

4 2 5 4 5 23.2 - - - 

5 2 6 2 5 22.4 15.2 - - 

6 2 6 4 5 21.5 15.6 1.0 - 

7 2 6 5 5 21.2 13.9 0 

8 2 7 4 7 13.2 8.8 - - 

9 2 10 2 10 13.8 0 

10 2 10 4 10 5.7 1.3 0 

Table 6. Sets of cascade SL use various widths and overlaps to test iterated Lagrange multipliers. In this test, each pair of 

proximal and Lagrangian cascades forms a series. The multipliers for proximal cascade Lagrange-relaxed constraints in 

each subproblem come from the previous series. The initial series' multipliers are 0. Each subsequent series' multiplier 

comes from the last subproblem in which the corresponding constraint is active. The Lagrangian cascade selects a multi- 

plier from the most recent proximal cascade subproblem in which the corresponding constraint is active. For instance, Set 

#6 has staircase overlap 2, proximal cascade width 6, proximal cascade overlap 4, and Lagrangian cascade width 5. The 

series 1 gap of 21.5% reflects no dual information. The series 2 and 3 gaps of 15.6% and 1.0%, respectively reflect new 

and more accurate multipliers. A "-" series entry indicates that the gap oscillates back to a previous value, and no fur- 

ther improvement occurs. The results show significant gap improvement in all but sets 2 and 4. The mean gap is reduced 

from 15.0% to 5.9%. 

These results show that information regarding future constraints reduces the 

average proximal-Lagrangian gap from 15.0% to 5.9%. The gap is reduced in 8 of 10 sets. 

Incorporating penalties in the proximal cascade objective improves the La- 

grangian cascade quality as well. Averaged over the 10 sets, the Lagrangian cascade solu- 

tion values account for 53% of the total gap reduction, proximal cascades account for the 

remaining 47%. 

Iterated Lagrange multipliers provide encouraging results, but require mul- 

tiple series of cascades that "look into the future." Consequently, any improved solution 

quality requires more computation and omniscience. 
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b.        Forward Pass Multipliers 

We can pass forward dual multipliers from prior subproblems in a proximal 

cascade without violating myopia. Myopia does not preclude incorporating past informa- 

tion to better accommodate the future. To the extent that constraints have homogeneous 

structure from period to period, Lagrange multipliers from previous subproblems may ap- 

proximate resource consumption penalties of future periods. 

We use cascade SL to demonstrate forward pass multipliers since it has a 

homogeneous structure. In this test, each penalty passed to subproblem n + 1 is the mean 

of the optimal multipliers from the staircase constraints of the last m periods in subproblem 

n. For example, if the active periods of subproblem 1 are 1 through 10, and the staircase 

overlap is 2, the multipliers passed forward to subproblem 2 are the average of the optimal 

staircase duals from periods 9 and 10. 

Set# 
Unaltered Forward Pass 

% gap Multipliers % gap 

1 7.0 6.8 

2 10.7 10.7 

3 11.5 11.5 

4 23.2 12.9 

5 22.4 37.6 

6 21.5 21.1 

7 21.2 21.2 

8 13.2 2.7 

9 13.8 7.9 

10 5.7 3.8 

Table 7. Sets of cascade SL use various widths and overlaps to test forward pass multipliers. Using the same widths and 

overlaps as Table 6, sets 1 through 10 are used to test a single cascade series with dual penalties passed forward from 

each proximal cascade subproblem to its successor. Each penalty passed to subproblem n + 1 is the mean of the optimal 

multipliers from constraints of the last m periods in subproblem n. Myopia is not violated, since only "historical" resource 

prices are used to predict the future. For instance, the gap from set #4 without passing forward multipliers is 23.2%. The 

gap improves to 12.9% when multipliers are passed forward. Only set 5 produces a larger gap, and the average gap is 

reduced from 15.0% to 13.6%. 

Table 7 describes the results of this test using the same sets from Table 6. 

The percentage gaps shown are with and without forward pass multipliers. 
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Incorporating forward pass multipliers yields the same or smaller gap in 9 

out of 10 sets. This result is not surprising. Rather than simply ignoring the restrictions 

imposed by the future, the model predicts the future based on an average assessment of the 

past. 

As with iterated Lagrange multipliers, over half of the forward pass multi- 

pliers gap improvement results from better dual information strengthening the Lagrangian 

bound. On average, 62% of the average gap reduction comes from the Lagrangian cascade; 

38% comes from proximal cascade improvement. 

Passing forward average values is imprecise; performance can be improved 

considerably given any underlying knowledge of which past constraints are similar to future 

constraints. For example, the relative value of resources A and B often remains similar 

across time. Averaging the two values of subproblem n's marginal cost for A and B makes 

little sense when forecasting subproblem n + l's penalties. Cyclical similarity also might 

occur in a model that, for example, has a cascade index set covering many weeks in daily 

time increments. In this situation, last Friday's multipliers might provide a better forecast 

for next Friday than an average of last Thursday's, and Friday's, and Saturday's multipliers. 

Perhaps an idea as simple as exponential moving average duals would capture the sense of 

proximity using cascades. Applying this technique is model specific, and presents a topic 

for future research. 

2.        Explicitly Improving Lagrangian Cascades 

Just as traditional Lagrange multiplier search methods tighten the bound provided 

by Lagrangian relaxation [e.g., Parker and Rardin, pp. 212-237], a Lagrangian cascade also 

benefits from improved multipliers. The iterated Lagrange multipliers method provides an 

opportunity for a multiplier search after each series. However, search methods are com- 

putationally expensive, so providing this feedback may lengthen the series considerably. 

Since the iterated Lagrange multipliers method already updates multipliers from series-to- 

series and improves the Lagrangian bound as a result, the extra effort may not be warranted. 

Nonetheless, it remains an area for future research. 
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D.        A CASCADING VARIATION OF BENDERS' DECOMPOSITION 

In this section, we show that cascade solution quality improves significantly on test 

problems using a strategy that adds cuts from previous cascade series. These cuts, although 

weak, yield problem S solution values within a few percent of monolith optimal after several 

series. This approach is a heuristic variation of Benders' decomposition [Benders' 1962]. 

The 2-stage Benders' decomposition of Van Slyke and Wets [1969], and its multi- 

stage extension by Birge [1985] successively add cuts that support the (convex) Lagrangian 

dual function. Using a variation of this approach in concert with the iterated Lagrange 

multiplier technique, we attain a tighter gap between the proximal and Lagrangian cascade 

solutions on 10 simple staircase problems. 

In order to demonstrate how Benders' cuts can be incorporated into a proximal cas- 

cade, define TEn = {t : t >lastpn) as the future periods (the set of periods that are not 

active in subproblems 1,..., n). Problem BCASn is the solution to the remaining periods, 

given the fixed columns of subproblems l,...,n - 1. In other words, BCASn provides the 

solution to the remaining monolith, given the cascade solution for t e \Jn><nTFn : 

{BCASn) Zn= Yl   Y, M?'+rnin Y VQ + min Y htXt 

s.t.       £      a«,Xt,>   st-Y,      E      a«'*"'     *teTCn (BCAS1) 

t'eT5tnrCn n'<nt'£TStnTFn' 

Y     att>Xt> >   st-      Y     °tvXv     Vi e TEn 

t'eTStnTEn t'€TStnTCn 

Xt>0 Vt € TCn U TEn. 

Taking the dual of the rows and columns indexed by t eTEn yields: 

Zn = Y   V  htXf +min V htXt + max Y ßt U -      Y      att'Xt' 
7^nt^n> X  teTC" P   tzTE"      \        t>eTStnTC" 

s.t.       (BCAS.l), 

Y   ß*<*t<ht   VteTEn (flCn.1) 
t':t€TSt, 

Xt>0  \/teTCn ßt>0   VteTE". 
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Figure 12. This figure illustrates the terms of a dualized constraint from problem BCASn, which represents the remaining 

monolith given the solution to subproblems 1,..., n - 1. The periods of BCASn are partitioned into sets TCn and TEn. 

TC n has the same width as all previous subproblems; TE n consists of all the future periods. In the example, the last period 
of TC n is 10, the first period of TE n is 11, and the constraint overlap m is 2. When rows indexed by TE n are dualized, the 
left-hand-side terms in the row indexed by period 11 are/3uoii,ii, ß12ai2,n, and/313ai3,ii,or£;t,.116TS/, ßt,at\u- 

Refer to Figure 12 for an illustration that describes why the left-hand-side terms in equation 

BCn.l are all indexed by t eTEn. 

Proceeding with the Benders' decomposition, the above formulation is equivalent 

to 

^=EE  W + nnn £ htXt + max   £ ß? L -      £      a^xA 
ri<nt<=TF"' tZTC71 ' tGTE» \ t'<=TStr\TCn / 

S.t.   (BCAS.l) 

xt>o      vt e TCn. 
where /3f} is a component of vector b(i) G B, the set of extreme points defined by the 

region: 

J2   ßt?a*t<ht   VteTEn 

t':teTSt, 
ßt>0    Vt € TEn 

(for simplicity, and to avoid the need for feasibility cuts, we assume that the feasible region 

in this problem is a bounded polytope [e.g., Parker and Rardin, 1988, pp.237-244]). Thus, 
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cascade BCASn may be rewritten as 

n' <n t€TFn' t&TCn 

s.t. (BCAS.l) 

0n >  E $ (s* -      E     °«'X<')       i = *' -'|B1 (BCAS.2) 
t£TEn \ t'eTStnTCn / 

Xt > 0 Vt G TC". 

Each of these proximal cascade subproblems serves as the master problem for its 

successor and the subproblem of its predecessor. The Benders' subproblem consists of de- 

riving additional cuts of the form given by BCAS .2. A subset of these constraints approxi- 

mates BCASn, which is an approximation of the monolith when n = 1. 

Cut generation for BCASn is done by BCASn+1. Unfortunately, instead of the sub- 

problem implied by BCAS .2, the available subproblem provided by BCASn+l is 

(BCASn+1) Zn=   J2    E  W+niin   J^   htXt + imn   £   htX* 
n><n+lteTF"' teTC^1 t&TEn+l 

s.t.    Y,   att,Xt'^ St~ E    E   a«,x*'  wzTcn+1 

t'<=TStC\TCn+l n'<n+lt'£TStnTFn' 

J2   **xt,> st-   Y,   au,Xt' vteT£n+1 

t'€T5tnrß"+1 t'€T5tnTCn+1 

Xt > 0 Vt e TCn+1 U TEn+1. 

Taking the dual of BCAS n+1 yields 
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r = E   E W 
n'<n+l teTFn' 

+ max   £   &L-   £        53      a*A?']+   £   ftU-       E       a»'X<' 

s.t. JT   ßt,at,t<ht   VteTC71^ (BCn+1.1) 
t':t£TSt/ 

]T   ßt>at>t<ht   VteTEn+l. (BCn+1.2) 
f:t€TSt/ 

Because of the cascade overlap, T£n ^rCn+1U7,£n+1. Consequently, the subproblem ex- 

treme points required by BCASn are defined by BCn.l, while the subproblem extreme 

points of BCASn+1 are defined by BCn+l.l and BCn+1.2. Thus, the extreme points 

b(i) € B required by BCASn are not the same as the extreme points provided by the dual 

of BCASn+1. However, only the cascade overlap distinguishes the two feasible regions, 

which suggests the two regions share many similarities. 

The first series of the cascading variation of Benders' decomposition solves sub- 

problems BCASx ,BCAS2,... ,BCAS N, without any cuts. Subsequent series solve these sub- 

problems in the same order using the heuristic cuts generated by the dual variables from 

BCn+l.l and BCn+1.2 of all previous series. Each series includes one additional cut per 

subproblem. The proximal cascade solution value is the objective value of the last subprob- 

lem of the most recent series, since TE N ^ 0. A Lagrangian cascade uses the dual variables 

supplied by the most recent proximal cascade. 

Table 8 gives results for test sets 1 through 10. In general, the method does not 

converge to monolith optimal, but stabilizes consistently within a few percent in all of these 

examples. As with iterated Lagrange multipliers and forward pass multipliers, over half 

(60%) of the gap reduction is attributable to the Lagrangian cascade, which reflects the 

benefit of more accurate Lagrangian penalties. 

These results suggest a promising alternative to Lagrangian methods of passing dual 

information within the proximal cascade (although this method should not be used when en- 

forcing myopia). Unlike traditional nested decomposition for staircase models, the cascad- 
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Set# 
Benders'Series        Unaltered        Iterated Lagrange        Benders' 

until Stable %gap Multipliers % gap %gap 

1 13 7.0 -2 0 
2 10 10.7 10.7 7.2 

3 2 11.5 0 1.7 
4 9 23.2 23.2 6.5 
5 3 22.4 15.2 4.0 

6 4 21.5 1.0 3.3 
7 4 21.2 0 3.3 

8 3 13.2 8.8 1-3 

9 2 13.8 0 0 
10 3 5.7 0 0 

Table 8. Sets of cascade BCAS use the same widths and overlaps as in Table 6 to test the cascading variation of Benders' 

decomposition. Each Benders' series includes one more dual cut in the proximal cascade than the previous series. By 
retaining old cuts, this method is more effective at gap reduction than unaltered or iterated Lagrange multipliers methods. 
For example, set #8 requires 3 Benders' series to stabilize at a gap of 1.3%. In contrast, the unaltered cascade produces 
a gap of 13.2%, while the iterated Lagrange multipliers cascade has a gap of 8.8%. The Benders' gap is always less than 

the unaltered gap, but is slightly larger than the iterated Lagrange multipliers gap in sets 3,6, and 7. The average Benders' 
gap is 2.7%, while the unaltered and iterated Benders' gaps are 15.0% and 5.9%, respectively. Additionally, the Benders' 

approach typically yields gaps within a few percent, while the iterated Lagrange multipliers gaps are more erratic. 

ing variation of Benders' lacks a convergence proof. However, traditional nested decompo- 

sitions have no cascade overlap, and must enforce rows with fixed column levels at the risk 

of infeasibility. Thus, the cascading variation of Benders' decomposition has an advantage 

over many nested formulations, which must add cuts until convergence is obtained. 

E.        CASCADES WITH FIXED FUTURE PRIMALS 

We improve solution quality on test problems by fixing all inactive columns at their 

last computed level, either from a (previous) proximal cascade subproblem of the current 

series, or from a proximal cascade subproblem of the previous series. The fixed future 

primals method is unlike other cascade strategies in this research because those strategies 

all fix future columns at zero. Fixing future primal columns based on previous series is not 

myopic, and it may offer considerable improvement in solution quality. 

Primal variables indexed by t > lastp71 do not influence cascade subproblem SCAS n, 

since a row's cascade index is never exceeded by any associated column's cascade index. In 
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order to incorporate an influence of future columns, we define set 

TUn = {t : lastpn <t< lastpn + m} as the set of future periods just outside the active in- 

dex set. Now consider subproblem SFn which activates all rows associated with any active 

column: 

(SFn)   Zn=Y,  Yl htXt  + "^ 12 htXt 

n'<nt£TFn' t€TCn 

S.t.    J2  att'xf> s*-E   12   att,x*   VieTC,n      (SFv 
t'€TStriTCn n'<nt'^TStnTFn' 

E      att'Xt,>   st-      J2     att,Xt,     \/teTUn (SF2) 
t'€TStnTCn t'€TStnTUn 

Xt>0        vt e TCn. 

Here, Xt is the last value computed for a column from a cascade of the previous series. 

Xt = 0 Vt in the first series. 

The fixed future primals method is appealing because it may increase solution qual- 

ity with only a minor formulation change, but this change may have disadvantages. For 

example, including constraint SE2 in the formulation may produce infeasibility when the 

constraints represent balance of flows, particularly in the first series when Xt = 0. This dif- 

ficulty motivated the discussion in Chapter II, Section B.2, and precipitated leaving these 

rows inactive for other cascade descriptions. 

Constraint SF2 also increases the number of rows in each subproblem without guar- 

anteeing improvement of the solution quality. Consider this simple example: 

min     4Xi   +2X2 +X3 

s.t.   lOXx     +X2 > 2 
+X2 X3 > 2 

Xu       X2, X3 > 0. 

A solution to this problem is: X{ = .2, X3* = 2, with Z* = 2.8. Now consider a cascade 
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with two subproblems: 

min     4Xi +2X2 x\+ min 2X2 +x3 
s.t.    lOXi +x2 > 2 s.t. x2 >   2-10X1 

x2 > 2 x2 +x3 >        2 
xlt x2, > 0 x2, Xz >     o 

zl = 4 Z2 = 4 

x{ = 0 xl = 2 

XI = 2 xl = 0. 

Since Xf = 0, subsequent series will generate the same solution and no improvement in 

solution quality can result. 

Although it does not guarantee better solution quality, the fixed future primals method 

works well in test sets. Table 9 compares fixed future primals with the Benders' method 

of the last section. The two methods offer similar results, although the Benders' method 

consistently yields gaps under 10%, while fixed future primals gaps are more erratic. 

Fixed future primals offer another method to improve solution quality when myopia 

is not required. As with iterated dual multipliers and the cascading variation of Benders' 

decomposition, fixed future primals require multiple cascade series. This method is simpler 

to implement than adding Benders' cuts, although subproblem infeasibility is more likely 

due to the increased number of constraints with inactive associated columns. The resulting 

gaps are smaller than with the Lagrangian penalty method, but larger than the gaps obtained 

with the Benders' method. 

E        SUMMARY 

Cascades often provide a useful alternative to actually solving a linear programming 

monolith. Linear programs with constraints that can be re-ordered into a staircase are usu- 

ally suitable for cascading. The casfactorT, wT, and allactT gauges provide an indication 

of cascade suitability, although some formulations complicate their effectiveness. 

A suitable model warrants cascading if the monolith is too large to solve, or if the 

model requires myopic solution, or if we can isolate "easy" subproblems that facilitate rapid 
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Benders' 

% gap 

Primal Primal Primal Primal Primal Primal 

et# Series 1 

% gap 

Series 2 

% gap 

Series 3 

% gap 

Series 4 

% gap 

Series 5 

% gap 

Series 6 

% gap 

1 0 7.0 .6 0 

2 7.2 12.9 7.4 5.1 4.0 2.7 - 

3 1.7 10.6 7.8 - - - - 

4 6.5 8.2 4.7 - - - - 

5 4.0 18.5 12.5 - - - - 

6 3.3 27.7 .3 0 

7 3.3 46.0 4.6 3.3 - - - 

8 1.3 5.5 5.5 2.3 1.3 0 

9 0 13.8 12.4 - - - - 

10 0 5.6 1.3 - - - - 

Table 9. Sets of cascade SF use various widths and overlaps to compare fixedfuture primals with the cascading variation 

of Benders' decomposition. In the primal method, each proximal cascade subproblem incorporates columns fixed in the 

previous series to estimate future columns in the current series, therereby reducing myopia. We terminate each set when 

a series yields a gap of zero, or when no further gap reduction occurs. For instance, Set #6 has a Benders' gap of 3.3%. 

The first fixed future primals series uses future column levels fixed at 0, and yields a gap of 27.7%. Subsequent fixed 

future primals gaps for set #6 are .3%, and 0%. A "-" series entry indicates that no further gap improvement occurs. 

Fixed future primals yield better solution quality than Lagrangian penalty methods, although the solution qualties are not, 

on average, as good as the Benders' solution qualities. The average fixed future primals gap is 4.5%, and the average 

Benders' gap is 2.7%. 

monolith solution. Cascades are a viable alternative to attempting an outright monolith 

solution in any of these situations. 

Finally, incorporating dual, or additional primal information in a proximal cascade 

reduces the proximal-Lagrangian gap. Forward pass multipliers preserve myopia by incor- 

porating dual information from structurally similar constraints of previous subproblems. 

Other methods require multiple cascade series. The iterated Lagrange multipliers method, 

fixed future primals method, and the cascading variation of Benders' decomposition all 

violate myopia, but provide more gap reduction than a myopic cascade. 
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VI.       SUMMARY AND RECOMMENDATIONS 

This dissertation develops a proximal cascade heuristic to approximate solutions of 

large linear programs, and a Lagrangian cascade to bound the error incurred by that ap- 

proximation. NRMO demonstrates the usefulness of cascades on a large, time-based linear 

program. This model has the staircase structure conducive to cascades, but also includes 

numerous complexities that allow us to illustrate the flexibility of cascades. This disser- 

tation also examines the applicability of cascades to more general models, and presents 

enhancements that reduce the proximal-Lagrangian gap. 

A.        CONTRIBUTIONS 

1. Large-Scale Mathematical Programming 

There are several contributions to the solution techniques for large-scale optimiza- 

tion models presented in this research. First, we formalize the proximal cascade heuristic, 

and present results that relate the cascade solution value to the monolith solution value for 

staircase linear programs. Although we present the results in the context of elastic-demand 

staircase LPs, they are directly applicable to more general staircase models. Additionally, 

we develop optimistic bounds on the monolith solution value using a proximal cascade for 

a specific class of problems. 

This research also introduces and develops the Lagrangian cascade. Using dual 

prices from the proximal cascade, a Lagrangian cascade serves as a super-optimal bound 

on the monolith solution to any staircase model. Previously, no technique existed to evaluate 

how close the proximal cascade solution value might be to the monolith solution value. We 

strengthen the Lagrangian cascade bound by the introduction of extended constraints and 

duplicate variables. This technique is generalizable to any Lagrangian relaxation. 

We extend the theory of proximal cascades to utilize dual as well as primal vari- 

ables in subsequent cascades or subproblems. The fixed future primals method improves 
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solution quality by fixing the future columns of the subproblems at their last computed val- 

ues. Dual information can improve the cascade solution quality by rewarding satisfaction of 

constraints that are explicitly enforced in later subproblems. There are three specific dual 

techniques, including: 1) iterated Lagrange multipliers, which use duals from the corre- 

sponding constraints of previous cascade series, 2) forward pass multipliers, which forecast 

future dual prices using a previous subproblem, and 3) a cascading variation of Benders' 

decomposition, which adds successive dual cuts to each subproblem. 

2.        Air Mobility Optimization 

This research describes a large-scale optimization model to enhance DOD's mobil- 

ity analysis capability. NRMO, jointly developed with Rosenthal, Morton, and Melody, is 

the most detailed optimization model of USAF air mobility assets ever developed. It is cur- 

rently in use by the RAND Corporation, has been accepted by the Air Force Studies and 

Analyses Agency, and is being evaluated by Headquarters, Air Mobility Command for use 

in forthcoming studies. 

Cascades alleviate the primary concern in the mobility analysis community that an 

instance of a NRMO model, large enough to capture adequate detail, is too large to solve. 

Cascading reduces NRMO solution times by as much as 80% when available memory is lim- 

ited. Cascades also eliminate the secondary concern that optimizing the air mobility system 

erroneously assumes perfect scheduling foresight, although the actual system is myopic. 

Furthermore, this dissertation demonstrates the availability of optimistic bounds that are 

used to examine the cost of myopic scheduling. 

B.        RECOMMENDATIONS FOR FUTURE RESEARCH 

We suggest some interesting enhancements to cascades for further study: 

• A cascade of integer programs is mentioned in this research but not developed. 
Although the proximal cascade results apply directly to integer programs, the 
Lagrangian cascade results do not. Lagrangian relaxations of integer programs 
may exhibit an integrality gap, since even optimal dual multipliers do not neces- 
sarily provide a tight bound. Non-optimal multipliers from a proximal cascade 
will generally degrade this gap even further. Additionally, a Lagrangian cascade 
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requires meaningful dual information from the proximal cascade. Meaningful 
duals may not be available when the proximal cascade includes integer restric- 
tions. 

A cascade subproblem's first and last periods in this research are set at regular 
intervals. Model structure may suggest alternate "boundaries" where the model 
is weakly linked. Exploiting this information a priori could increase cascade 
solution quality, but appears to be very model specific and difficult to predict in 
general. 

Penalties taken from previous proximal cascade subproblems and applied to the 
active subproblem are approximated crudely in this research. When possible, 
penalties should be chosen to exploit suspected similarities between previously 
constrained resources and resources of the active subproblem. Simple techniques 
such as exponential smoothing could also have merit. 

Chapter V does not develop any explicit modifications of the Lagrangian cascade 
to reduce the proximal-Lagrangian cascade gap. The use of well-documented 
multiplier search methods on a cascade could significantly reduce this gap, al- 
though the computational burden would be increased. 

C.        CONCLUSION 

Cascades provide a useful approximation strategy when problem structure permits, 

and when model size or system myopia warrants. This research formalizes a proximal 

cascade approximation on a class of problems, develops a Lagrangian cascade bound on 

that approximation, and demonstrates the combined approach on a model currently in use 

by the USAF. 
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